School of Physics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    Compact, Lightweight, and Filter-Free: An AII-Si Microspectrometer Chip for Visible Light Spectroscopy
    Cadusch, JJ ; Meng, J ; Wen, D ; Shrestha, VR ; Crozier, KB (AMER CHEMICAL SOC, 2022-02-16)
  • Item
    Thumbnail Image
    Visible to long-wave infrared chip-scale spectrometers based on photodetectors with tailored responsivities and multispectral filters
    Cadusch, JJ ; Meng, J ; Craig, BJ ; Shrestha, VR ; Crozier, KB (De Gruyter Open, 2020-09-01)
    Chip-scale microspectrometers, operational across the visible to long-wave infrared spectral region will enable many remote sensing spectroscopy applications in a variety of fields including consumer electronics, process control in manufacturing, as well as environmental and agricultural monitoring. The low weight and small device footprint of such spectrometers could allow for integration into handheld, unattended vehicles or wearable-electronics based systems. This review will focus on recent developments in nanophotonic microspectrometer designs, which fall into two design categories: (i) planar filter-arrays used in conjunction with visible or IR detector arrays and (ii) microspectrometers using filter-free detector designs with tailored responsivities, where spectral filtering and photocurrent generation occur within the same nanostructure.
  • Item
    Thumbnail Image
    Mid- to long-wave infrared computational spectroscopy with a graphene metasurface modulator.
    Shrestha, VR ; Craig, B ; Meng, J ; Bullock, J ; Javey, A ; Crozier, KB (Nature Publishing Group, 2020-03-25)
    In recent years there has been much interest concerning the development of modulators in the mid- to long-wave infrared, based on emerging materials such as graphene. These have been frequently pursued for optical communications, though also for other specialized applications such as infrared scene projectors. Here we investigate a new application for graphene modulators in the mid- to long-wave infrared. We demonstrate, for the first time, computational spectroscopy in the mid- to long-wave infrared using a graphene-based metasurface modulator. Furthermore, our metasurface device operates at low gate voltage. To demonstrate computational spectroscopy, we provide our algorithm with the measured reflection spectra of the modulator at different gate voltages. We also provide it with the measured reflected light power as a function of the gate voltage. The algorithm then estimates the input spectrum. We show that the reconstructed spectrum is in good agreement with that measured directly by a Fourier transform infrared spectrometer, with a normalized mean-absolute-error (NMAE) of 0.021.