School of Physics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 116
  • Item
    No Preview Available
    Mid-Infrared Gas Classification Using a Bound State in the Continuum Metasurface and Machine Learning
    Russell, BJ ; Meng, J ; Crozier, KB (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2023-10-01)
  • Item
    Thumbnail Image
    Instant-in-Air Liquid Metal Printed Ultrathin Tin Oxide for High-Performance Ammonia Sensors
    Nguyen, CK ; Taylor, PD ; Zavabeti, A ; Alluhaybi, H ; Almalki, S ; Guo, X ; Irfan, M ; Al Kobaisi, M ; Ippolito, SJ ; Spencer, MJS ; Balendhran, S ; Roberts, A ; Daeneke, T ; Crozier, KB ; Sabri, Y ; Syed, N (Wiley, 2024)
    Liquid metal-based printing techniques are emerging as an exemplary platform for harvesting non-layered 2D materials with a thickness down to a few nanometres, leading to an ultra-large surface-area-to-volume ratio that is ideal for sensing applications. In this work, the synthesis of 2D tin dioxide (SnO2) by exfoliating the surface oxide of molten tin is reported which highlights the enhanced sensing capability of the obtained materials to ammonia (NH3) gas is reported. It is demonstrated that amperometric gas sensors based on liquid metal-derived 2D SnO2 nanosheets can achieve excellent NH3 sensing performance at low temperature (150 °C) with and without UV light assistance. Detection over a wide range of NH3 concentrations (5–500 ppm) is observed, revealing a limit of detection at the parts per billion (ppb) level. The 2D SnO2 nanosheets also feature excellent cross-interference performance toward different organic and inorganic gas species, showcasing a high selectivity. Further, ab initio DFT calculations reveal the NH3 adsorption mechanism is dominated by chemisorption with a charge transfer into 2D SnO2 nanosheets. In addition, a proof of concept for prototype flexible ammonia sensors is demonstrated by depositing 2D SnO2 on a polyimide substrate, signifying the high potential of employing liquid metal printed SnO2 for realizing wearable gas sensors.
  • Item
    No Preview Available
    Semiconductor lasers with integrated metasurfaces for direct output beam modulation, enabled by innovative fabrication methods
    Wen, D ; Crozier, KB (WALTER DE GRUYTER GMBH, 2023-04-25)
    Abstract Semiconductor lasers play critical roles in many different systems, ranging from optical communications to absorption spectroscopy for environmental monitoring. Despite numerous applications, many semiconductor lasers have problems such as significant beam divergence and polarization instability. External optical elements like objective lenses and polarizers are usually needed to address these issues. This Review will discuss how these issues have recently been dealt with by instead integrating metasurfaces into semiconductor lasers. This necessitates the development of innovative fabrication methods; these will also be the topic of this Review. Metasurfaces can be integrated on the emitting facet of a laser. This can help select the lasing mode or can be used just to modify the output beam properties without affecting the modes. They can also be integrated monolithically with lasers through waveguides, or work in an external cavity configuration. These integrated devices provide novel optical functions, such as direct orbital angular momentum (OAM) mode generation, wavelength tuning and holographic pattern generation. We hope this Review will help extend the use of metasurface-integrated semiconductor lasers to scientific and industrial systems that employ lasers.
  • Item
    No Preview Available
    Multicolor detour phase holograms based on an Al plasmonic color filter.
    Khaleghi, SSM ; Wen, D ; Cadusch, J ; Crozier, KB (Optica Publishing Group, 2023-01-16)
    The remarkable advances in nanofabrication that have occurred over the last decade present opportunities for the realization of new types of holograms. In this work, for the first time to the best of our knowledge, a method for phase multicolor holograms based on nanohole arrays is described. The nanoholes are in an aluminum film that is interposed between the glass substrate and a silicon dioxide layer. The nanoholes serve as color filters for blue, green, and red wavelengths and provide the necessary phase distribution via the detour phase method. Our nanohole arrays are optimized to maximize the transmission efficiency of the red, green, and blue channels and to minimize the cross-talk between them. We design two multicolor holograms based on these filters and simulate their performance. The results show good fidelity to the desired holographic images. The proposed structure has the advantages of being very compact, of requiring only a simple fabrication method with one lithography step, and of employing materials (aluminum and silicon dioxide) that are compatible with standard CMOS technology.
  • Item
    No Preview Available
    Optical fiber speckle spectrometer based on reversed-lens smartphone microscope.
    Tan, H ; Li, B ; Crozier, KB (Springer Science and Business Media LLC, 2023-08-10)
    Smartphones are a potentially powerful platform for scientific instruments. Here, we demonstrate speckle spectroscopy with smartphone-level hardware. This technique promises greater performance thresholds than traditional diffraction gratings. Light is injected into an optical fiber and the emergent speckle patterns are imaged by a reversed-lens smartphone camera. The smartphone then uses an algorithm, running on a mobile computing app, to determine, in less than one second, the (hitherto unknown) input spectrum. We reconstruct a variety of visible-wavelength (470-670 nm) single and multi-peaked spectra using a tunable source. The latter also include a metameric pair, i.e., two spectra that are different, yet represent colors that are indistinguishable to the human eye.
  • Item
    No Preview Available
    The Acoustophotoelectric Effect: Efficient Phonon-Photon-Electron Coupling in Zero-Voltage-Biased 2D SnS2 for Broad-Band Photodetection
    Alijani, H ; Reineck, P ; Komljenovic, R ; Russo, SP ; Low, MX ; Balendhran, S ; Crozier, KB ; Walia, S ; Nash, GR ; Yeo, LY ; Rezk, AR (AMER CHEMICAL SOC, 2023-09-27)
    Two-dimensional (2D) layered metal dichalcogenides constitute a promising class of materials for photodetector applications due to their excellent optoelectronic properties. The most common photodetectors, which work on the principle of photoconductive or photovoltaic effects, however, require either the application of external voltage biases or built-in electric fields, which makes it challenging to simultaneously achieve high responsivities across broad-band wavelength excitation─especially beyond the material's nominal band gap─while producing low dark currents. In this work, we report the discovery of an intricate phonon-photon-electron coupling─which we term the acoustophotoelectric effect─in SnS2 that facilitates efficient photodetection through the application of 100 MHz order propagating surface acoustic waves (SAWs). This effect not only reduces the band gap of SnS2 but also provides the requisite momentum for indirect band gap transition of the photoexcited charge carriers, to enable broad-band photodetection beyond the visible light range, while maintaining pA-order dark currents─ without the need for any external voltage bias. More specifically, we show in the infrared excitation range that it is possible to achieve up to 8 orders of magnitude improvement in the material's photoresponsivity compared to that previously reported for SnS2-based photodetectors, in addition to exhibiting superior performance compared to most other 2D materials reported to date for photodetection.
  • Item
    No Preview Available
    Room Temperature Bias-Selectable, Dual-Band Infrared Detectors Based on Lead Sulfide Colloidal Quantum Dots and Black Phosphorus
    Wang, S ; Ashokan, A ; Balendhran, S ; Yan, W ; Johnson, BC ; Peruzzo, A ; Crozier, KB ; Mulvaney, P ; Bullock, J (AMER CHEMICAL SOC, 2023-06-15)
    A single photodetector capable of switching its peak spectral photoresponse between two wavelength bands is highly useful, particularly for the infrared (IR) bands in applications such as remote sensing, object identification, and chemical sensing. Technologies exist for achieving dual-band IR detection with bulk III-V and II-VI materials, but the high cost and complexity as well as the necessity for active cooling associated with some of these technologies preclude their widespread adoption. In this study, we leverage the advantages of low-dimensional materials to demonstrate a bias-selectable dual-band IR detector that operates at room temperature by using lead sulfide colloidal quantum dots and black phosphorus nanosheets. By switching between zero and forward bias, these detectors switch peak photosensitive ranges between the mid- and short-wave IR bands with room temperature detectivities of 5 × 109 and 1.6 × 1011 cm Hz1/2 W-1, respectively. To the best of our knowledge, these are the highest reported room temperature values for low-dimensional material dual-band IR detectors to date. Unlike conventional bias-selectable detectors, which utilize a set of back-to-back photodiodes, we demonstrate that under zero/forward bias conditions the device's operation mode instead changes between a photodiode and a phototransistor, allowing additional functionalities that the conventional structure cannot provide.
  • Item
    No Preview Available
    Flexible Vanadium Dioxide Photodetectors for Visible to Longwave Infrared Detection at Room Temperature ((press release associated article should be online on 21.06.2023))
    Balendhran, S ; Taha, M ; Wang, S ; Yan, W ; Higashitarumizu, N ; Wen, D ; Azar, NS ; Bullock, J ; Mulvaney, P ; Javey, A ; Crozier, KB (WILEY-V C H VERLAG GMBH, 2023-10-13)
    Abstract Flexible optoelectronics is a rapidly growing field, with a wide range of potential applications. From wearable sensors to bendable solar cells, curved displays, and curved focal plane arrays, the possibilities are endless. The criticality of flexible photodetectors for many of these applications is acknowledged, however, devices that are demonstrated thus far are limited in their spectral range. In this study, flexible photodetectors are demonstrated using a VOx nanoparticle ink, with an extremely broad operating wavelength range of 0.4 to 20 µm. This ink is synthesized using a simple and scalable wet‐chemical process. These photodetectors operate at room temperature and exhibit minimal variance in performance even when bent at angles of up to 100 ° at a bend radius of 6.4 mm. In addition, rigorous strain testing of 100 bend and release cycles revealed a photoresponse with a standard deviation of only 0.55%. This combination of mechanical flexibility, wide spectral response, and ease of fabrication makes these devices highly desirable for a wide range of applications, including low‐cost wearable sensors and hyperspectral imaging systems.
  • Item
    No Preview Available
    Mid-infrared spectral reconstruction with dielectric metasurfaces and dictionary learning
    Russell, BJ ; Cadusch, JJ ; Meng, J ; Wen, D ; Crozier, KB (Optica Publishing Group, 2022-05-15)
    Mid-infrared (MIR) spectroscopy has numerous industrial applications and is usually performed with Fourier-transform infrared (FTIR) spectrometers. While these work well for many purposes, there is currently much interest in alternative approaches that are smaller and lighter, i.e., MIR microspectrometers. Here we investigate all-dielectric metasurfaces as spectral filters for MIR microspectrometers. Two metasurface types are studied. For the first, we design, fabricate, and test a metasurface with a narrow and angularly tunable transmission stop band. We use it to reconstruct the transmission spectra of various materials. The second metasurface, investigated theoretically, possesses narrow passband features via symmetry-protected bound states in the continuum.
  • Item
    No Preview Available
    Anomalous thickness dependence of photoluminescence quantum yield in black phosphorous.
    Higashitarumizu, N ; Uddin, SZ ; Weinberg, D ; Azar, NS ; Reaz Rahman, IKM ; Wang, V ; Crozier, KB ; Rabani, E ; Javey, A (Springer Science and Business Media LLC, 2023-05)
    Black phosphorus has emerged as a unique optoelectronic material, exhibiting tunable and high device performance from mid-infrared to visible wavelengths. Understanding the photophysics of this system is of interest to further advance device technologies based on it. Here we report the thickness dependence of the photoluminescence quantum yield at room temperature in black phosphorus while measuring the various radiative and non-radiative recombination rates. As the thickness decreases from bulk to ~4 nm, a drop in the photoluminescence quantum yield is initially observed due to enhanced surface carrier recombination, followed by an unexpectedly sharp increase in photoluminescence quantum yield with further thickness scaling, with an average value of ~30% for monolayers. This trend arises from the free-carrier to excitonic transition in black phosphorus thin films, and differs from the behaviour of conventional semiconductors, where photoluminescence quantum yield monotonically deteriorates with decreasing thickness. Furthermore, we find that the surface carrier recombination velocity of black phosphorus is two orders of magnitude lower than the lowest value reported in the literature for any semiconductor with or without passivation; this is due to the presence of self-terminated surface bonds in black phosphorus.