School of Physics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds
    Ryan, RG ; Stacey, A ; O'Donnell, KM ; Ohshima, T ; Johnson, BC ; Hollenberg, LCL ; Mulvaney, P ; Simpson, DA (AMER CHEMICAL SOC, 2018-04-18)
    Nanoscale quantum probes such as the nitrogen-vacancy (NV) center in diamonds have demonstrated remarkable sensing capabilities over the past decade as control over fabrication and manipulation of these systems has evolved. The biocompatibility and rich surface chemistry of diamonds has added to the utility of these probes but, as the size of these nanoscale systems is reduced, the surface chemistry of diamond begins to impact the quantum properties of the NV center. In this work, we systematically study the effect of the diamond surface chemistry on the quantum coherence of the NV center in nanodiamonds (NDs) 50 nm in size. Our results show that a borane-reduced diamond surface can on average double the spin relaxation time of individual NV centers in nanodiamonds when compared to thermally oxidized surfaces. Using a combination of infrared and X-ray absorption spectroscopy techniques, we correlate the changes in quantum relaxation rates with the conversion of sp2 carbon to C-O and C-H bonds on the diamond surface. These findings implicate double-bonded carbon species as a dominant source of spin noise for near surface NV centers. The link between the surface chemistry and quantum coherence indicates that through tailored engineering of the surface, the quantum properties and magnetic sensitivity of these nanoscale systems may approach that observed in bulk diamond.
  • Item
    Thumbnail Image
    Direct Assembly of Large Area Nanoparticle Arrays
    Zhang, H ; Cadusch, J ; Kinnear, C ; James, T ; Roberts, A ; Mulvaney, P (AMER CHEMICAL SOC, 2018-08)
    A major goal of nanotechnology is the assembly of nanoscale building blocks into functional optical, electrical, or chemical devices. Many of these applications depend on an ability to optically or electrically address single nanoparticles. However, positioning large numbers of single nanocrystals with nanometer precision on a substrate for integration into solid-state devices remains a fundamental roadblock. Here, we report fast, scalable assembly of thousands of single nanoparticles using electrophoretic deposition. We demonstrate that gold nanospheres down to 30 nm in size and gold nanorods <100 nm in length can be assembled into predefined patterns on transparent conductive substrates within a few seconds. We find that rod orientation can be preserved during deposition. As proof of high fidelity scale-up, we have created centimeter scale patterns comprising more than 1 million gold nanorods.
  • Item
    Thumbnail Image
    Directed Chemical Assembly of Single and Clustered Nanoparticles with Silanized Templates
    Kinnear, C ; Cadusch, J ; Zhang, H ; Lu, J ; James, TD ; Roberts, A ; Mulvaney, P (AMER CHEMICAL SOC, 2018-06-26)
    The assembly of nanoscale materials into arbitrary, organized structures remains a major challenge in nanotechnology. Herein, we report a general method for creating 2D structures by combining top-down lithography with bottom-up chemical assembly. Under optimal conditions, the assembly of gold nanoparticles was achieved in less than 30 min. Single gold nanoparticles, from 10 to 100 nm, can be placed in predetermined patterns with high fidelity, and higher-order structures can be generated consisting of dimers or trimers. It is shown that the nanoparticle arrays can be transferred to, and embedded within, polymer films. This provides a new method for the large-scale fabrication of nanoparticle arrays onto diverse substrates using wet chemistry.
  • Item
    Thumbnail Image
    Direct Assembly of Large Area Nanoparticle Arrays
    Mulvaney, P ; ZHANG, H ; KINNEAR, C ; Cadusch, J ; JAMES, T ; ROBERTS, ANN ( 2018-07-13)
    We describe the fabrication of large area arrays of single nanoparticles using electrophoretic deposition.
  • Item
    Thumbnail Image
    Electron paramagnetic resonance microscopy using spins in diamond under ambient conditions
    Simpson, DA ; Ryan, RG ; Hall, LT ; Panchenko, E ; Drew, SC ; Petrou, S ; Donnelly, PS ; Mulvaney, P ; Hollenberg, LCL (NATURE PUBLISHING GROUP, 2017-09-06)
    Magnetic resonance spectroscopy is one of the most important tools in chemical and bio-medical research. However, sensitivity limitations typically restrict imaging resolution to ~ 10 µm. Here we bring quantum control to the detection of chemical systems to demonstrate high-resolution electron spin imaging using the quantum properties of an array of nitrogen-vacancy centres in diamond. Our electron paramagnetic resonance microscope selectively images electronic spin species by precisely tuning a magnetic field to bring the quantum probes into resonance with the external target spins. This provides diffraction limited spatial resolution of the target spin species over a field of view of 50 × 50 µm2 with a spin sensitivity of 104 spins per voxel or ∼100 zmol. The ability to perform spectroscopy and dynamically monitor spin-dependent redox reactions at these scales enables the development of electron spin resonance and zepto-chemistry in the physical and life sciences.Electron paramagnetic resonance spectroscopy has important scientific and medical uses but improving the resolution of conventional methods requires cryogenic, vacuum environments. Simpson et al. show nitrogen vacancy centres can be used for sub-micronmetre imaging with improved sensitivity in ambient conditions.
  • Item
    No Preview Available
    Hot Carrier Extraction with Plasmonic Broadband Absorbers
    Ng, C ; Cadusch, JJ ; Dligatch, S ; Roberts, A ; Davis, TJ ; Mulvaney, P ; Gomez, DE (American Chemical Society, 2016-04-01)
    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photocatalysis, photovoltaics, and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multistack layered configuration to achieve broadband, near-unit light absorption, which is spatially localized on the nanoparticle layer. We show that this enhanced light absorbance leads to ∼40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where (i) the photons have energies higher than the Schottky junctions and (ii) the absorption of light is localized on the metal nanoparticles.
  • Item
    Thumbnail Image
    Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging
    Tetienne, J-P ; Lombard, A ; Simpson, DA ; Ritchie, C ; Lu, J ; Mulvaney, P ; Hollenberg, LCL (AMER CHEMICAL SOC, 2016-01)
    Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress toward this goal, but generalization of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here, we report on a scanning quantum probe microscope which solves both issues by employing a nanospin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time while preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nanospin ensemble is used as a thermometer. We use this technique to map the photoinduced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way toward new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes.
  • Item
    No Preview Available
    Monitoring ion-channel function in real time through quantum decoherence
    Hall, LT ; Hill, CD ; Cole, JH ; Staedler, B ; Caruso, F ; Mulvaney, P ; Wrachtrup, J ; Hollenberg, LCL (NATL ACAD SCIENCES, 2010-11-02)
    In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery.
  • Item
    Thumbnail Image
    Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters
    Rajasekharan, R ; Balaur, E ; Minovich, A ; Collins, S ; James, TD ; Djalalian-Assl, A ; Ganesan, K ; Tomljenovic-Hanic, S ; Kandasamy, S ; Skafidas, E ; Neshev, DN ; Mulvaney, P ; Roberts, A ; Prawer, S (NATURE PORTFOLIO, 2014-09-22)
    The pixel size imposes a fundamental limit on the amount of information that can be displayed or recorded on a sensor. Thus, there is strong motivation to reduce the pixel size down to the nanometre scale. Nanometre colour pixels cannot be fabricated by simply downscaling current pixels due to colour cross talk and diffraction caused by dyes or pigments used as colour filters. Colour filters based on plasmonic effects can overcome these difficulties. Although different plasmonic colour filters have been demonstrated at the micron scale, there have been no attempts so far to reduce the filter size to the submicron scale. Here, we present for the first time a submicron plasmonic colour filter design together with a new challenge - pixel boundary errors at the submicron scale. We present simple but powerful filling schemes to produce submicron colour filters, which are free from pixel boundary errors and colour cross- talk, are polarization independent and angle insensitive, and based on LCD compatible aluminium technology. These results lay the basis for the development of submicron pixels in displays, RGB-spatial light modulators, liquid crystal over silicon, Google glasses and pico-projectors.
  • Item
    Thumbnail Image
    Polarisation to colour transformation via nano-antenna enhanced quantum dot emission
    James, TD ; Panchenk, E ; Nguyen, TL ; Mulvaney, P ; Davis, TJ ; Roberts, A ; Faraone, L ; Martyniuk, M (IEEE, 2014)