School of Physics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Room Temperature Bias-Selectable, Dual-Band Infrared Detectors Based on Lead Sulfide Colloidal Quantum Dots and Black Phosphorus
    Wang, S ; Ashokan, A ; Balendhran, S ; Yan, W ; Johnson, BC ; Peruzzo, A ; Crozier, KB ; Mulvaney, P ; Bullock, J (AMER CHEMICAL SOC, 2023-06-15)
    A single photodetector capable of switching its peak spectral photoresponse between two wavelength bands is highly useful, particularly for the infrared (IR) bands in applications such as remote sensing, object identification, and chemical sensing. Technologies exist for achieving dual-band IR detection with bulk III-V and II-VI materials, but the high cost and complexity as well as the necessity for active cooling associated with some of these technologies preclude their widespread adoption. In this study, we leverage the advantages of low-dimensional materials to demonstrate a bias-selectable dual-band IR detector that operates at room temperature by using lead sulfide colloidal quantum dots and black phosphorus nanosheets. By switching between zero and forward bias, these detectors switch peak photosensitive ranges between the mid- and short-wave IR bands with room temperature detectivities of 5 × 109 and 1.6 × 1011 cm Hz1/2 W-1, respectively. To the best of our knowledge, these are the highest reported room temperature values for low-dimensional material dual-band IR detectors to date. Unlike conventional bias-selectable detectors, which utilize a set of back-to-back photodiodes, we demonstrate that under zero/forward bias conditions the device's operation mode instead changes between a photodiode and a phototransistor, allowing additional functionalities that the conventional structure cannot provide.
  • Item
    No Preview Available
    Tuning the Photoluminescence Anisotropy of Semiconductor Nanocrystals
    Yuan, G ; Higginbotham, HF ; Han, J ; Yadav, A ; Kirkwood, N ; Mulvaney, P ; Bell, TDM ; Cole, JH ; Funston, AM (AMER CHEMICAL SOC, 2023-09-25)
    Semiconductor nanocrystals are promising optoelectronic materials. Understanding their anisotropic photoluminescence is fundamental for developing quantum-dot-based devices such as light-emitting diodes, solar cells, and polarized single-photon sources. In this study, we experimentally and theoretically investigate the photoluminescence anisotropy of CdSe semiconductor nanocrystals with various shapes, including plates, rods, and spheres, with either wurtzite or zincblende structures. We use defocused wide-field microscopy to visualize the emission dipole orientation and find that spheres, rods, and plates exhibit the optical properties of 2D, 1D, and 2D emission dipoles, respectively. We rationalize the seemingly counterintuitive observation that despite having similar aspect ratios (width/length), rods and long nanoplatelets exhibit different defocused emission patterns by considering valence band structures calculated using multiband effective mass theory and the dielectric effect. The principles are extended to provide general relationships that can be used to tune the emission dipole orientation for different materials, crystalline structures, and shapes.
  • Item
    No Preview Available
    Flexible Vanadium Dioxide Photodetectors for Visible to Longwave Infrared Detection at Room Temperature ((press release associated article should be online on 21.06.2023))
    Balendhran, S ; Taha, M ; Wang, S ; Yan, W ; Higashitarumizu, N ; Wen, D ; Azar, NS ; Bullock, J ; Mulvaney, P ; Javey, A ; Crozier, KB (WILEY-V C H VERLAG GMBH, 2023-10-13)
    Abstract Flexible optoelectronics is a rapidly growing field, with a wide range of potential applications. From wearable sensors to bendable solar cells, curved displays, and curved focal plane arrays, the possibilities are endless. The criticality of flexible photodetectors for many of these applications is acknowledged, however, devices that are demonstrated thus far are limited in their spectral range. In this study, flexible photodetectors are demonstrated using a VOx nanoparticle ink, with an extremely broad operating wavelength range of 0.4 to 20 µm. This ink is synthesized using a simple and scalable wet‐chemical process. These photodetectors operate at room temperature and exhibit minimal variance in performance even when bent at angles of up to 100 ° at a bend radius of 6.4 mm. In addition, rigorous strain testing of 100 bend and release cycles revealed a photoresponse with a standard deviation of only 0.55%. This combination of mechanical flexibility, wide spectral response, and ease of fabrication makes these devices highly desirable for a wide range of applications, including low‐cost wearable sensors and hyperspectral imaging systems.
  • Item
    Thumbnail Image
    A General Method for Direct Assembly of Single Nanocrystals
    Zhang, H ; Liu, Y ; Ashokan, A ; Gao, C ; Dong, Y ; Kinnear, C ; Kirkwood, N ; Zaman, S ; Maasoumi, F ; James, TD ; Widmer-Cooper, A ; Roberts, A ; Mulvaney, P (WILEY-V C H VERLAG GMBH, 2022-07)
    Abstract Controlled nanocrystal assembly is a pre‐requisite for incorporation of these materials into solid state devices. Many assembly methods have been investigated which target precise nanocrystal positioning, high process controllability, scalability, and universality. However, most methods are unable to achieve all of these goals. Here, surface templated electrophoretic deposition (STED) is presented as a potential assembly method for a wide variety of nanocrystals. Controlled positioning and deposition of a wide range of nanocrystals into arbitrary spatial arrangements − including gold nanocrystals of different shapes and sizes, magnetic nanocrystals, fluorescent organic nanoparticles, and semiconductor quantum dots − is demonstrated. Nanoparticles with diameters <10 nm are unable to be deposited due to their low surface charge and strong Brownian motion (low Péclet number). It is shown that this limit can be circumvented by forming clusters of nanocrystals or by silica coating nanocrystals to increase their effective size.
  • Item
    Thumbnail Image
    A Tunable Polymer-Metal Based Anti-Reflective Metasurface
    Brasse, Y ; Ng, C ; Magnozzi, M ; Zhang, H ; Mulvaney, P ; Fery, A ; Gomez, DE (WILEY-V C H VERLAG GMBH, 2020-01)
    Anti-reflective surfaces are of great interest for optical devices, sensing, photovoltaics, and photocatalysis. However, most of the anti-reflective surfaces lack in situ tunability of the extinction with respect to wavelength. This communication demonstrates a tunable anti-reflective surface based on colloidal particles comprising a metal core with an electrochromic polymer shell. Random deposition of these particles on a reflective surface results in a decrease in the reflectance of up to 99.8% at the localized surface plasmon resonance frequency. This narrow band feature can be tuned by varying the pH or by application of an electric potential, resulting in wavelength shifts of up to 30 nm. Electrophoretic particle deposition is shown to be an efficient method for controlling the interparticle distance and thereby further optimizing the overall efficiency of the anti-reflective metasurface.
  • Item
    Thumbnail Image
    Concealed Structural Colors Uncovered by Light Scattering
    Akinoglu, EM ; Song, J ; Kinnear, C ; Xue, Y ; Zhang, H ; Roberts, A ; Koehler, J ; Mulvaney, P (WILEY-V C H VERLAG GMBH, 2020-11)
    Abstract Unusual structural colors are demonstrated in thin‐film coatings due to a combination of optical interference and light scattering effects. These vivid colors are concealed under ambient illumination but can be observed when light is reflected from the film surface. The origin of the effect is explored computationally and it is shown that, in thin‐films of lossless dielectrics coated on near‐perfect conductors, incident electromagnetic waves form standing waves. Electric field intensities at the thin film interfaces are maximized for wavelengths that fulfil destructive interference conditions, while nanoscale roughness can enhance scattering at these boundaries. The interplay of these two factors yields vivid, thickness‐dependent colors. This approach increases the repertoire of optical effects and perceived colors in thin coatings. When combined with traditional thin‐film interference colours, dichromatic images with distinctly changing colors can be generated, which can function as a covert, optical security feature.
  • Item
    Thumbnail Image
    Direct Assembly of Vertically Oriented, Gold Nanorod Arrays
    Zhang, H ; Liu, Y ; Shahidan, MFS ; Kinnear, C ; Maasoumi, F ; Cadusch, J ; Akinoglu, EM ; James, TD ; Widmer-Cooper, A ; Roberts, A ; Mulvaney, P (WILEY-V C H VERLAG GMBH, 2021-02-03)
    Although many nanoscale materials such as quantum dots and metallic nanocrystals exhibit size dependent optical properties, it has been difficult to incorporate them into optical or electronic devices because there are currently no methods for precise, large‐scale deposition of single nanocrystals. Of particular interest is the need to control the orientation of single nanocrystals since the optical properties are usually strongly anisotropic. Here a method based on electrophoretic deposition (EPD) is reported to precisely assemble vertically oriented, single gold nanorods. It is demonstrated that the orientation of gold nanorods during deposition is controlled by the electric dipole moment induced along the rod by the electric field. Dissipative particle dynamics simulations indicate that the magnitude of this dipole moment is dominated by the polarizability of the solution phase electric double layer around the nanorod. The resulting vertical gold nanorod arrays exhibit reflected colors due to selective excitation of the transverse surface plasmon mode. The EPD method allows assembly of arrays with a density of over one million, visually resolvable, vertical nanorods per square millimeter.