School of Physics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    A General Method for Direct Assembly of Single Nanocrystals
    Zhang, H ; Liu, Y ; Ashokan, A ; Gao, C ; Dong, Y ; Kinnear, C ; Kirkwood, N ; Zaman, S ; Maasoumi, F ; James, TD ; Widmer-Cooper, A ; Roberts, A ; Mulvaney, P (WILEY-V C H VERLAG GMBH, 2022-07)
    Abstract Controlled nanocrystal assembly is a pre‐requisite for incorporation of these materials into solid state devices. Many assembly methods have been investigated which target precise nanocrystal positioning, high process controllability, scalability, and universality. However, most methods are unable to achieve all of these goals. Here, surface templated electrophoretic deposition (STED) is presented as a potential assembly method for a wide variety of nanocrystals. Controlled positioning and deposition of a wide range of nanocrystals into arbitrary spatial arrangements − including gold nanocrystals of different shapes and sizes, magnetic nanocrystals, fluorescent organic nanoparticles, and semiconductor quantum dots − is demonstrated. Nanoparticles with diameters <10 nm are unable to be deposited due to their low surface charge and strong Brownian motion (low Péclet number). It is shown that this limit can be circumvented by forming clusters of nanocrystals or by silica coating nanocrystals to increase their effective size.
  • Item
    Thumbnail Image
    Optical Janus Effect in Large Area Multilayer Plasmonic Films
    Priscilla, N ; Smith, D ; Della Gaspera, E ; Song, J ; Wesemann, L ; James, T ; Roberts, A (Wiley, 2022)
    Plasmonic and other nanoparticles have attracted considerable interest for their role in structural coloration. The optical “Janus” effect, where the color of light reflected from a partially transmitting film depends on whether the device is viewed from the substrate or the coating side, is observed using a variety of nanostructured films. Herein, the optical Janus effect produced by homogeneous thin-film structures comprising only four layers of three different materials with a total thickness less than 300 nm is demonstrated. An asymmetric Fabry–Perot (FP) nanocavity is formed with a dielectric film bounded by two different metal films of nanoscale thickness. The semitransparent device has a transmitted color that is independent of the viewing direction. A broad color palette is available through the selection of various thicknesses and film materials. In addition to the directional optical effect, the device possesses iridescence properties and can generate images by selective removal of regions of one of the metallic films using simple photolithography. From a manufacturing perspective, this device is scalable and holds significant promise for applications in architecture, producing decorative features, and the development of overt and covert security features.
  • Item
    No Preview Available
    Vivid plasmonic color under ambient light
    SHAHIDAN, MFS ; SONG, J ; JAMES, TD ; ROBERTS, A (Optical Society of America (OSA), 2021-12-06)
    We report a novel nanoimprinted polarization-independent plasmonic pixel device utilizing different metals (Ag, Al or Au) exhibiting fade-resistant, vivid coloration under unpolarized light achieved with symmetric cross-shaped nanoantenna-hole structures. The spectral and color responses show minimal sensitivity to the polarization state of the incident light, both in reflection and transmission. The devices also have good tolerance to variations in viewing angle. Various colors are generated by simply adjusting the armlength of the cross and through choice of metal. Among all the devices, those fabricated using Ag demonstrated the best performance with 80% reflection and 12% transmission efficiencies and the production of brighter colors. With the ease of fabrication using a high-throughput NIL method, the plasmonic color devices have significant potential in sensing technology, high-resolution color printing and product-branding applications.
  • Item
    Thumbnail Image
    Multilevel nanoimprint lithography with a binary mould for plasmonic colour printing
    Shahidan, MFS ; Song, J ; James, TD ; Roberts, A (ROYAL SOC CHEMISTRY, 2020-05-01)
    Pigment-free colouration based on plasmonic resonances has recently attracted considerable attention for potential in manufacturing and other applications. For plasmonic colour utilizing the metal-insulator-metal (MIM) configuration, the generated colour is not only dependent on the geometry and transverse dimensions, but also to the size of the vertical gap between the metal nanoparticles and the continuous metal film. The complexity of conventional fabrication methods such as electron beam lithography (EBL), however, limits the capacity to control this critical parameter. Here we demonstrate the straightforward production of plasmonic colour via UV-assisted nanoimprint lithography (NIL) with a simple binary mould and demonstrate the ability to control this gap distance in a single print by harnessing the nanofluidic behaviour of the polymer resist through strategic mould design. We show that this provides a further avenue for controlling the colour reflected by the resulting plasmonic pixels as an adjunct to the conventional approach of tailoring the transverse dimensions of the nanostructures. Our experimental results exhibit wide colour coverage of the CIE 1931 XY colour space through careful control of both the length and periodicity and the resulting vertical gap size of the structure during the nanoimprinting process. Furthermore, to show full control over the vertical dimension, we show that a fixed gap size can be produced by introducing complementary microcavities in the vicinity of the nanostructures on the original mould. This demonstrates a simple method for obtaining an additional degree of freedom in NIL not only for structural colouration but also for other industrial applications such as high-density memory, biosensors and manufacturing.
  • Item
    Thumbnail Image
    Direct Assembly of Vertically Oriented, Gold Nanorod Arrays
    Zhang, H ; Liu, Y ; Shahidan, MFS ; Kinnear, C ; Maasoumi, F ; Cadusch, J ; Akinoglu, EM ; James, TD ; Widmer-Cooper, A ; Roberts, A ; Mulvaney, P (WILEY-V C H VERLAG GMBH, 2021-02-03)
    Although many nanoscale materials such as quantum dots and metallic nanocrystals exhibit size dependent optical properties, it has been difficult to incorporate them into optical or electronic devices because there are currently no methods for precise, large‐scale deposition of single nanocrystals. Of particular interest is the need to control the orientation of single nanocrystals since the optical properties are usually strongly anisotropic. Here a method based on electrophoretic deposition (EPD) is reported to precisely assemble vertically oriented, single gold nanorods. It is demonstrated that the orientation of gold nanorods during deposition is controlled by the electric dipole moment induced along the rod by the electric field. Dissipative particle dynamics simulations indicate that the magnitude of this dipole moment is dominated by the polarizability of the solution phase electric double layer around the nanorod. The resulting vertical gold nanorod arrays exhibit reflected colors due to selective excitation of the transverse surface plasmon mode. The EPD method allows assembly of arrays with a density of over one million, visually resolvable, vertical nanorods per square millimeter.