School of Physics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Scalable and Consistent Fabrication of Plasmonic colors via Nanoimprint Lithography
    Shahidan, MFS ; Song, J ; James, TD ; Mulvaney, P ; Roberts, A ; Simpson, MC ; Juodkazis, S (SPIE-INT SOC OPTICAL ENGINEERING, 2019-01-01)
    We utilised thermal and UV-assisted Nanoimprint Lithography (NIL) i.e. thermal and UV-assisted to produce plasmonic coloration, and compare their ability for scalable fabrication. Several designs are presented and we show the generated colors are dependent on their geometry and the direction of polarisation of incident illumination. Finally, we demonstrated UV-NIL for consistent production of large-area (0.6×0.4 cm2) plasmonic color with extended color gamut.
  • Item
    Thumbnail Image
    Plasmonics-enabled metal-semiconductor-metal photodiodes for high-speed interconnects and polarization sensitive detectors
    Panchenko, E ; Cadusch, JJ ; James, TD ; Roberts, A ; GarciaBlanco, SM ; Conti, GN (SPIE-INT SOC OPTICAL ENGINEERING, 2017-01-01)
    Metal-semiconductor-metal (MSM) photodiodes are commonly used in ultrafast photoelectronic devices. Re- cently it was shown that localized surface plasmons can su_ciently enhance photodetector capabilities at both infrared and visible wavelengths. Such structures are of great interest since they can be used for fast, broadband detection. By utilizing the properties of plasmonic structures it is possible to design photodetectors that are sensitive to the polarization state of the incident wave. The direct electrical readout of the polarization state of an incident optical beam has many important applications, especially in telecommunications, bio-imaging and photonic computing. Furthermore, the fact that surface plasmon polaritons can circumvent the di_raction limit, opens up signi_cant opportunities to use them to guide signals between logic gates in modern integrated circuits where small dimensions are highly desirable. Here we demonstrate two MSM photodetectors integrated with aluminum nanoantennas capable of distinguishing orthogonal states of either linearly or circularly polarized light with no additional _lters. The localized plasmon resonances of the antennas lead to selective screening of the un- derlying silicon from light with a particular polarization state. The non-null response of the devices to each of the basis states expands the potential utility of the photodetectors while improving precision. We also demonstrate a design of waveguide-coupled MSM photodetector suitable for planar detection of surface plasmons.