School of Physics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    Direct Assembly of Large Area Nanoparticle Arrays
    Zhang, H ; Cadusch, J ; Kinnear, C ; James, T ; Roberts, A ; Mulvaney, P (AMER CHEMICAL SOC, 2018-08)
    A major goal of nanotechnology is the assembly of nanoscale building blocks into functional optical, electrical, or chemical devices. Many of these applications depend on an ability to optically or electrically address single nanoparticles. However, positioning large numbers of single nanocrystals with nanometer precision on a substrate for integration into solid-state devices remains a fundamental roadblock. Here, we report fast, scalable assembly of thousands of single nanoparticles using electrophoretic deposition. We demonstrate that gold nanospheres down to 30 nm in size and gold nanorods <100 nm in length can be assembled into predefined patterns on transparent conductive substrates within a few seconds. We find that rod orientation can be preserved during deposition. As proof of high fidelity scale-up, we have created centimeter scale patterns comprising more than 1 million gold nanorods.
  • Item
    Thumbnail Image
    Tuning of Plasmonic Resonances in the Near Infrared Spectrum Using a Double Coaxial Aperture Array
    Sun, M ; Kavehei, O ; Beckett, P ; Robert, A ; Shieh, W ; Unnithan, RR (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2018-12)
  • Item
    Thumbnail Image
    Directed Chemical Assembly of Single and Clustered Nanoparticles with Silanized Templates
    Kinnear, C ; Cadusch, J ; Zhang, H ; Lu, J ; James, TD ; Roberts, A ; Mulvaney, P (AMER CHEMICAL SOC, 2018-06-26)
    The assembly of nanoscale materials into arbitrary, organized structures remains a major challenge in nanotechnology. Herein, we report a general method for creating 2D structures by combining top-down lithography with bottom-up chemical assembly. Under optimal conditions, the assembly of gold nanoparticles was achieved in less than 30 min. Single gold nanoparticles, from 10 to 100 nm, can be placed in predetermined patterns with high fidelity, and higher-order structures can be generated consisting of dimers or trimers. It is shown that the nanoparticle arrays can be transferred to, and embedded within, polymer films. This provides a new method for the large-scale fabrication of nanoparticle arrays onto diverse substrates using wet chemistry.
  • Item
    Thumbnail Image
    Ultracompact Camera Pixel with Integrated Plasmonic Color Filters
    Panchenko, E ; Wesemann, L ; Gomez, DE ; James, TD ; Davis, T ; Roberts, A (WILEY-V C H VERLAG GMBH, 2019-09-17)
    Photodetector size imposes a fundamental limit on the amount of information that can be recorded by an image sensor. Compact, high-resolution sensors are generally preferred for portable electronic devices such as mobile phones and digital cameras, and as a result, a significant effort has been invested in improving the image quality provided by small-area image sensors. Reducing photodetector size, however, still faces challenges in implementation requiring improvements in current technology to meet the demand for ultracompact imaging systems such as cameras. An issue with a decrease in size is associated with photodetectors utilizing color filters. In most commonly used camera designs these filters are made of dyes or pigments and incompatible with the complementary metal-oxide-semiconductor fabrication process. They are, therefore, fabricated in two different technological processes and require subsequent alignment. As the pixel size decreases, the alignment of these layers becomes challenging. Furthermore, dye-based filters need to have a thickness of the order of micrometers to ensure sufficient absorption. Here a compact, low-cost color sensor is proposed and experimentally demonstrated utilizing monolithically integrated plasmonic antennas that have a nanoscale thickness and are fabricated in the same technological process with photodetector matrix.
  • Item
    Thumbnail Image
    Hot-Carrier Organic Synthesis via the Near-Perfect Absorption of Light
    Xiao, Q ; Connell, TU ; Cadusch, JJ ; Roberts, A ; Chesman, ASR ; Gomez, DE (AMER CHEMICAL SOC, 2018-11-01)
    Photocatalysis enables the synthesis of valuable organic compounds by exploiting photons as a chemical reagent. Although light absorption is an intrinsic step, existing approaches rely on poorly absorbing catalysts that require high illumination intensities to afford enhanced efficiencies. Here, we demonstrate that a plasmonic metamaterial capable of near-perfect light absorption (94%) readily catalyzes a model organic reaction with a 29-fold enhancement in conversion relative to controls. The oxidation of benzylamine proceeds via a reactive iminium intermediate with high selectivity at ambient temperature and pressure, using only low-intensity visible irradiation. Control experiments demonstrated that only hot charge carriers produced following photoexcitation facilitate the formation of superoxide radicals, which, in turn, leads to iminium formation. Modeling shows that hot holes with energies that overlap with the highest-occupied molecular orbital (HOMO) of the reactant can participate and initiate the photocatalytic conversion. These results have important implications for hot-carrier photocatalysis and plasmon-hot-carrier extraction.
  • Item
    Thumbnail Image
    Plasmene Metasurface Absorbers: Electromagnetic Hot Spots and Hot Carriers
    Shi, Q ; Connell, TU ; Xiao, Q ; Chesman, ASR ; Cheng, W ; Roberts, A ; Davis, TJ ; Gomez, DE (AMER CHEMICAL SOC, 2019-02-01)
    Light-matter interactions are extremely important, as they sustain life on Earth and can be tailored for diverse applications in areas such as solar energy conversion, chemical sensing, and information storage. One key process of these interactions is the absorption of photons. We demonstrate a novel material capable of absorbing up to 98% of incident visible light. The material comprises a thin sheet of a tightly packed two-dimensional lattice of metal nanoparticles, called plasmene, supported by a thin (subwavelength) dielectric film deposited on top of a mirror. We demonstrate how the resulting metasurface absorbers are useful in surface-enhanced spectroscopy and in the generation of plasmonic hot carriers. These structures hold great promise for applications in structural color, sensing, and photocatalysis.
  • Item
    Thumbnail Image
    Large-Area Nanofabrication of Partially Embedded Nanostructures for Enhanced Plasmonic Hot-Carrier Extraction
    Ng, C ; Zeng, P ; Lloyd, JA ; Chakraborty, D ; Roberts, A ; Smith, TA ; Bach, U ; Sader, JE ; Davis, TJ ; Gomez, DE (AMER CHEMICAL SOC, 2019-03-01)
    When plasmonic nanoparticles are coupled with semiconductors, highly energetic hot carriers can be extracted from the metal-semiconductor interface for various applications in light energy conversion. However, the current quantum yields for hot-electron extraction are generally low. An approach for increasing the extraction efficiency consists of maximizing the contact area between the surface of the metal nanostructure and the electron-accepting material. In this work, we developed an innovative, simple, and scalable fabrication technique that partially embeds colloidal plasmonic nanostructures within a semiconductor TiO2 layer without utilizing any complex top-down nanofabrication method. The successful embedding is confirmed by scanning electron microscopy and atomic force microscopy imaging. Using visible-pump, near-IR probe transient absorption spectroscopy, we also provide evidence that the increase in the surface contact area between the nanostructures and the electron-accepting material leads to an increase in the amount of hot-electron injection into the TiO2 layer.
  • Item
    Thumbnail Image
    Metasurfaces with Asymmetric Optical Transfer Functions for Optical Signal Processing
    Davis, TJ ; Eftekhari, F ; Gomez, DE ; Roberts, A (AMER PHYSICAL SOC, 2019-07-01)
    Metasurface thin films created from arrays of structured optical elements have been shown to perform spatial filtering of optical signals. To extend their usefulness it is important that the symmetry of their response with changes to the in-plane wave vector k_{p}→-k_{p} can be tailored or even dynamically tuned. In this Letter we use a general theory of metasurfaces constructed from nondiffracting arrays of coupled metal particles to derive the optical transfer function and identify the physical properties essential for asymmetry. We validate our theory experimentally showing how the asymmetric response of a two-dimensional (planar) metasurface can be optically tuned. Our results set the direction for future developments of metasurfaces for optical signal processing.
  • Item
    Thumbnail Image
    Optical image processing with metasurface dark modes
    Roberts, A ; Gomez, DE ; Davis, TJ (OPTICAL SOC AMER, 2018-09-01)
    Here we consider image processing using the optical modes of metasurfaces with an angle-dependent excitation. These spatially dispersive modes can be used to directly manipulate the spatial frequency content of an incident field, suggesting their use as ultra-compact alternatives for analog optical information processing. A general framework for describing the filtering process in terms of the optical transfer functions is provided. In the case where the relevant mode cannot be excited with a normally incident plane wave (a dark mode), high-pass filtering is obtained. We provide examples demonstrating filtering of both amplitude and pure phase objects.
  • Item
    Thumbnail Image
    Plasmonic Near-Complete Optical Absorption and Its Applications
    Ng, C ; Wesemann, L ; Panchenko, E ; Song, J ; Davis, TJ ; Roberts, A ; Gomez, DE (WILEY-V C H VERLAG GMBH, 2019-07-01)
    Near-complete absorption of light has the potential to underpin advances in photodetection, advanced chemistry, coloration of materials, and energy. This review paper reports recent progress on the development of metasurfaces and thin film structures that produce strong absorption bands in the visible and longer wavelength regions of the electromagnetic spectrum, due in part to the excitation of plasmonic resonances. Proof-of-concept demonstrations are discussed for applications of these in chemical sensing, the generation of structural color, the creation of optoelectronic devices, and photocatalysis. Emerging future applications are also discussed.