School of Physics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    Thumbnail Image
    The Simons Observatory: The Large Aperture Telescope Receiver (LATR) integration and validation results
    Xu, Z ; Bhandarkar, T ; Coppi, G ; Kofman, AM ; Orlowski-Scherer, JL ; Zhu, N ; Ali, AM ; Arnold, K ; Austermann, JE ; Choi, SK ; Connors, J ; Cothard, NF ; Devlin, M ; Dicker, S ; Dober, B ; Duff, SM ; Fabbian, G ; Galitzki, N ; Haridas, SK ; Harrington, K ; Healy, E ; Ho, SPP ; Hubmayr, J ; Iuliano, J ; Lashner, J ; Li, Y ; Limon, M ; Koopman, BJ ; McCarrick, H ; Moore, J ; Nati, F ; Niemack, MD ; Reichardt, CL ; Sarmiento, KP ; Seibert, J ; Silva-Feaver, M ; Sonka, RF ; Staggs, S ; Thornton, RJ ; Vavagiakis, EM ; Vissers, MR ; Walker, S ; Wang, Y ; Wollack, EJ ; Zheng, K ; Zmuidzinas, J ; Gao, J-R (SPIE, 2020-01-01)
    The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5m Small Aperture Telescopes (SATs) and one 6m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform our understanding of our universe by characterizing the properties of the early universe, measuring the number of relativistic species and the mass of neutrinos, improving our understanding of galaxy evolution, and constraining the properties of cosmic reionization.1 As a critical instrument, the Large Aperture Telescope Receiver (LATR) is designed to cool ∼60,000 transition-edge sensors (TES)2 to <100mK on a 1.7m diameter focal plane. The unprecedented scale of the LATR drives a complex design.3-5 In this paper, We will first provide an overview of the LATR design. Integration and validation of the LATR design is discussed in detail, including mechanical strength, optical alignment, and cryogenic performance of the five cryogenic stages (80 K, 40 K, 4 K, 1 K, and 100 mK). We will also discuss the microwave-multiplexing (μMux) readout system implemented in the LATR and demonstrate operation of dark, prototype TES bolometers. The μMux readout technology enables one coaxial loop to read out Ο(103) TES detectors. Its implementation within the LATR serves as a critical validation for the complex RF chain design. The successful validation of the LATR performance is not only a critical milestone within the Simons Observatory, it also provides a valuable reference for other experiments, e.g. CCAT-prime6 and CMB-S4.7, 8
  • Item
    Thumbnail Image
    SPT-3G+: Mapping the high-frequency cosmic microwave background using kinetic inductance detectors
    Anderson, AJ ; Barry, P ; Bender, AN ; Benson, BA ; Bleem, LE ; Carlstrom, JE ; Cecil, TW ; Chang, CL ; Crawford, TM ; Dibert, KR ; Dobbs, MA ; Fichman, K ; Halverson, NW ; Holzapfel, WL ; Hryciuk, A ; Karkare, KS ; Li, J ; Lisovenko, M ; Marrone, D ; McMahon, J ; Montgomery, J ; Natoli, T ; Pan, Z ; Raghunathan, S ; Reichardt, CL ; Rouble, M ; Shirokoff, E ; Smecher, G ; Stark, AA ; Vieira, JD ; Young, MR ; Zmuidzinas, J ; Gao, J-R (SPIE, 2022-01-01)
    We present the design and science goals of SPT-3G+, a new camera for the South Pole Telescope, which will consist of a dense array of 34100 kinetic inductance detectors measuring the cosmic microwave background (CMB) at 220, 285 and 345 GHz. The SPT-3G+ dataset will enable new constraints on the process of reionization, including measurements of the patchy kinematic Sunyaev-Zeldovich effect and improved constraints on the optical depth due to reionization. At the same time, it will serve as a pathfinder for the detection of Rayleigh scattering, which could allow future CMB surveys to constrain cosmological parameters better than from the primary CMB alone. In addition, the combined, multi-band SPT-3G and SPT-3G+ survey data, will have several synergies that enhance the original SPT-3G survey, including: extending the redshift-reach of SZ cluster surveys to z > 2; understanding the relationship between magnetic fields and star formation in our Galaxy; improved characterization of the impact of dust on inflationary B-mode searches; and characterizing astrophysical transients at the boundary between mm and sub-mm wavelengths. Finally, the modular design of the SPT-3G+ camera allows it to serve as an on-sky demonstrator for new detector technologies employing microwave readout, such as the on-chip spectrometers that we expect to deploy during the SPT-3G+ survey. In this paper, we describe the science goals of the project and the key technology developments that enable its powerful yet compact design.
  • Item
    No Preview Available
    Simons Observatory Small Aperture Telescope overview
    Kiuchi, K ; Adachi, S ; Ali, AM ; Arnold, K ; Ashton, P ; Austermann, JE ; Bazako, A ; Beall, JA ; Chinone, Y ; Coppi, G ; Crowley, KD ; Crowley, KT ; Dicker, S ; Dober, B ; Duff, SM ; Fabbian, G ; Galitzki, N ; Golec, JE ; Gudmundsson, JE ; Harrington, K ; Hasegawa, M ; Hattori, M ; Hill, CA ; Ho, SPP ; Hubmayr, J ; Johnson, BR ; Kaneko, D ; Katayama, N ; Keating, B ; Kusaka, A ; Lashner, J ; Lee, AT ; Matsuda, F ; McCarrick, H ; Murata, M ; Nati, F ; Nishinomiya, Y ; Page, L ; Sathyanarayana Rao, M ; Reichardt, CL ; Sakaguri, K ; Sakurai, Y ; Sibert, J ; Spisak, J ; Tajima, O ; Teply, GP ; Terasaki, T ; Tsan, T ; Walker, S ; Wollack, EJ ; Xu, Z ; Yamada, K ; Zannoni, M ; Zhu, N ; Marshall, HK ; Spyromilio, J ; Usuda, T (SPIE, 2020-01-01)
    The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes (SATs) and one large-aperture telescope (LAT), which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities. The SATs are optimized for a primordial gravitational wave signal in a parity odd polarization power spectrum at a large angular scale. We will present the latest status of the SAT development.
  • Item
    No Preview Available
    The Simons Observatory: Overview of data acquisition, control, monitoring, and computer infrastructure
    Koopman, BJ ; Lashner, J ; Saunders, LJ ; Hasselfield, M ; Bhandarkar, T ; Bhimani, S ; Choi, SK ; Duell, CJ ; Galitzki, N ; Harrington, K ; Hincks, AD ; Ho, SPP ; Newburgh, L ; Reichardt, CL ; Seibert, J ; Spisak, J ; Westbrook, B ; Xu, Z ; Zhu, N ; Guzman, JC ; Ibsen, J (SPIE, 2020-01-01)
    The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities, as outlined in The Simons Observatory Collaboration et al. (2019). To achieve these goals we have built an open-sourced platform, called OCS (Observatory Control System), which orchestrates distributed hardware systems. We provide an overview of the SO software and computer infrastructure.
  • Item
    Thumbnail Image
    The POLARBEAR-2 Experiment
    Suzuki, A ; Ade, P ; Akiba, Y ; Aleman, C ; Arnold, K ; Atlas, M ; Barron, D ; Borrill, J ; Chapman, S ; Chinone, Y ; Cukierman, A ; Dobbs, M ; Elleflot, T ; Errard, J ; Fabbian, G ; Feng, G ; Gilbert, A ; Grainger, W ; Halverson, N ; Hasegawa, M ; Hattori, K ; Hazumi, M ; Holzapfel, W ; Hori, Y ; Inoue, Y ; Jaehnig, G ; Katayama, N ; Keating, B ; Kermish, Z ; Keskitalo, R ; Kisner, T ; Lee, A ; Matsuda, F ; Matsumura, T ; Morii, H ; Moyerman, S ; Myers, M ; Navaroli, M ; Nishino, H ; Okamura, T ; Reichart, C ; Richards, P ; Ross, C ; Rotermund, K ; Sholl, M ; Siritanasak, P ; Smecher, G ; Stebor, N ; Stompor, R ; Suzuki, J ; Takada, S ; Takakura, S ; Tomaru, T ; Wilson, B ; Yamaguchi, H ; Zahn, O (Springer Science and Business Media LLC, 2014-09)
  • Item
    Thumbnail Image
    Results of gravitational lensing and primordial gravitational waves from the POLARBEAR experiment
    Chinone, Y ; Adachi, S ; Ade, PAR ; Aguilar, M ; Akiba, Y ; Arnold, K ; Baccigalupi, C ; Barron, D ; Beck, D ; Beckman, S ; Bianchini, F ; Boettger, D ; Borrill, J ; ElBouhargani, H ; Carron, J ; Chapman, S ; Cheung, K ; Crowley, K ; Cukierman, A ; Dunner, R ; Dobbs, M ; Ducout, A ; Elleflot, T ; Errard, J ; Fabbian, G ; Feeney, SM ; Feng, C ; Fujino, T ; Galitzki, N ; Gilbert, A ; Goeckner-Wald, N ; Groh, J ; Groh, JC ; Hal, G ; Halverson, N ; Hamada, T ; Hasegawa, M ; Hazumi, M ; Hill, CA ; Howe, L ; Inoue, Y ; Jaehnig, G ; Jaffe, AH ; Jeong, O ; LeJeune, M ; Kaneko, D ; Katayama, N ; Keating, B ; Keskitalo, R ; Kikuchi, S ; Kisner, T ; Krachmalnicoff, N ; Kusaka, A ; Lee, AT ; Leitch, EM ; Leon, D ; Linder, E ; Lowry, LN ; Mangu, A ; Matsuda, F ; Matsumura, T ; Minami, Y ; Montgomery, J ; Navaroli, M ; Nishino, H ; Paar, H ; Peloton, J ; Pham, ATP ; Poletti, D ; Puglisi, G ; Reichardt, CL ; Richards, PL ; Ross, C ; Segawa, Y ; Sherwin, BD ; Silva-Feaver, M ; Siritanasak, P ; Stebor, N ; Stompor, R ; Suzuki, A ; Tajima, O ; Takakura, S ; Takatori, S ; Tanabe, D ; Teply, GP ; Tomaru, T ; Tsai, C ; Tucker, C ; Verges, C ; Westbrook, B ; Whitehorn, N ; Zahn, A ; Zhou, Y (IOP PUBLISHING LTD, 2020-01-01)
    POLARBEAR is a Cosmic Microwave Background radiation (CMB) polarization experiment that is located in the Atacama Desert in Chile. The scientific goals of the experiment are to characterize the B-mode signal from gravitational lensing, as well as to search for B-mode signals created by primordial gravitational waves (PGWs). Polarbear started observations in 2012 and has published a series of results. These include the first measurement of a nonzero B-mode angular auto-power spectrum at sub-degree scales where the dominant signal is gravitational lensing of the CMB. In addition, we have achieved the first measurement of crosscorrelation between the lensing potential, which was reconstructed from the CMB polarization data alone by Polarbear, and the cosmic shear field from galaxy shapes by the Subaru Hyper Suprime-Cam (HSC) survey. In 2014, we installed a continuously rotating half-wave plate (CRHWP) at the focus of the primary mirror to search for PGWs and demonstrated the control of low-frequency noise. We have found that the low-frequency B-mode power in the combined dataset with the Planck high-frequency maps is consistent with Galactic dust foreground, thus placing an upper limit on the tensor-to-scalar ratio of r < 0.90 at the 95% confidence level after marginalizing over the foregrounds.
  • Item
    No Preview Available
    Year two instrument status of the SPT-3G cosmic microwave background receiver
    Bender, AN ; Ade, PAR ; Ahmed, Z ; Anderson, AJ ; Avva, JS ; Aylor, K ; Barry, PS ; Thakur, RB ; Benson, BA ; Bleem, LS ; Bocquet, S ; Byrum, K ; Carlstrom, JE ; Carter, FW ; Cecil, TW ; Chang, CL ; Cho, H-M ; Cliche, JF ; Crawford, TM ; Cukierman, A ; de Haan, T ; Denison, EV ; Ding, J ; Dobbs, MA ; Dodelson, S ; Dutcher, D ; Everett, W ; Foster, A ; Gallicchio, J ; Gilbert, A ; Groh, JC ; Guns, ST ; Halverson, NW ; Harke-Hosemann, AH ; Harrington, NL ; Henning, JW ; Hilton, GC ; Holder, GP ; Holzapfel, WL ; Huang, N ; Irwin, KD ; Jeong, OB ; Jonas, M ; Jones, A ; Khaire, TS ; Knox, L ; Kofman, AM ; Korman, M ; Kubik, DL ; Kuhlmann, S ; Kuo, C-L ; Lee, AT ; Leitch, EM ; Lowitz, AE ; Meyer, SS ; Michalik, D ; Montgomery, J ; Nadolski, A ; Natoli, T ; Nguyen, H ; Noble, GI ; Novosad, V ; Padin, S ; Pan, Z ; Pearson, J ; Posada, CM ; Quan, W ; Raghunathan, S ; Rahlin, A ; Reichardt, CL ; Ruhl, JE ; Sayre, JT ; Shirokoff, E ; Smecher, G ; Sobrin, JA ; Stark, AA ; Story, KT ; Suzuki, A ; Thompson, KL ; Tucker, C ; Vale, LR ; Vanderlinde, K ; Vieira, JD ; Wang, G ; Whitehorn, N ; Wu, WLK ; Yefremenko, V ; Yoon, KW ; Young, MR ; Zmuidzinas, J ; Gao, JR (SPIE-INT SOC OPTICAL ENGINEERING, 2018)
  • Item
    Thumbnail Image
    Performance and on-sky optical characterization of the SPTpol instrument
    George, EM ; Ade, P ; Aird, KA ; Austermann, JE ; Beall, JA ; Becker, D ; Bender, A ; Benson, BA ; Bleem, LE ; Britton, J ; Carlstrom, JE ; Chang, CL ; Chiang, HC ; Cho, H-M ; Crawford, TM ; Crites, AT ; Datesman, A ; de Haan, T ; Dobbs, MA ; Everett, W ; Ewall-Wice, A ; Halverson, NW ; Harrington, N ; Henning, JW ; Hilton, GC ; Holzapfel, WL ; Hoover, S ; Huang, N ; Hubmayr, J ; Irwin, KD ; Karfunkle, M ; Keisler, R ; Kennedy, J ; Lee, AT ; Leitch, E ; Li, D ; Lueker, M ; Marrone, DP ; McMahon, JJ ; Mehl, J ; Meyer, SS ; Montgomery, J ; Montroy, TE ; Nagy, J ; Natoli, T ; Nibarger, JP ; Niemack, MD ; Novosad, V ; Padin, S ; Pryke, C ; Reichardt, CL ; Ruhl, JE ; Saliwanchik, BR ; Sayre, JT ; Schaffer, KK ; Shirokoff, E ; Story, K ; Tucker, C ; Vanderlinde, K ; Vieira, JD ; Wang, G ; Williamson, R ; Yefremenko, V ; Yoon, KW ; Young, E ; Holland, WS ; Zmuidzinas, J (SPIE-INT SOC OPTICAL ENGINEERING, 2012)
    In January 2012, the 10m South Pole Telescope (SPT) was equipped with a polarization-sensitive camera, SPTpol, in order to measure the polarization anisotropy of the cosmic microwave background (CMB). Measurements of the polarization of the CMB at small angular scales (~several arcminutes) can detect the gravitational lensing of the CMB by large scale structure and constrain the sum of the neutrino masses. At large angular scales (~few degrees) CMB measurements can constrain the energy scale of Inflation. SPTpol is a two-color mm-wave camera that consists of 180 polarimeters at 90 GHz and 588 polarimeters at 150 GHz, with each polarimeter consisting of a dual transition edge sensor (TES) bolometers. The full complement of 150 GHz detectors consists of 7 arrays of 84 ortho-mode transducers (OMTs) that are stripline coupled to two TES detectors per OMT, developed by the TRUCE collaboration and fabricated at NIST. Each 90 GHz pixel consists of two antenna-coupled absorbers coupled to two TES detectors, developed with Argonne National Labs. The 1536 total detectors are read out with digital frequency-domain multiplexing (DfMUX). The SPTpol deployment represents the first on-sky tests of both of these detector technologies, and is one of the first deployed instruments using DfMUX readout technology. We present the details of the design, commissioning, deployment, on-sky optical characterization and detector performance of the complete SPTpol focal plane.
  • Item
    Thumbnail Image
    SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope
    Austermann, JE ; Aird, KA ; Beall, JA ; Becker, D ; Bender, A ; Benson, BA ; Bleem, LE ; Britton, J ; Carlstrom, JE ; Chang, CL ; Chiang, HC ; Cho, H-M ; Crawford, TM ; Crites, AT ; Datesman, A ; de Haan, T ; Dobbs, MA ; George, EM ; Halverson, NW ; Harrington, N ; Henning, JW ; Hilton, GC ; Holder, GP ; Holzapfel, WL ; Hoover, S ; Huang, N ; Hubmayr, J ; Irwin, KD ; Keisler, R ; Kennedy, J ; Knox, L ; Lee, AT ; Leitch, E ; Li, D ; Lueker, M ; Marrone, DP ; McMahon, JJ ; Mehl, J ; Meyer, SS ; Montroy, TE ; Natoli, T ; Nibarger, JP ; Niemack, MD ; Novosad, V ; Padin, S ; Pryke, C ; Reichardt, CL ; Ruhl, JE ; Saliwanchik, BR ; Sayre, JT ; Schaffer, KK ; Shirokoff, E ; Stark, AA ; Story, K ; Vanderlinde, K ; Vieira, JD ; Wang, G ; Williamson, R ; Yefremenko, V ; Woon, KW ; Zahn, O ; Holland, WS ; Zmuidzinas, J (SPIE-INT SOC OPTICAL ENGINEERING, 2012)
    SPTpol is a dual-frequency polarization-sensitive camera that was deployed on the 10-meter South Pole Telescope in January 2012. SPTpol will measure the polarization anisotropy of the cosmic microwave background (CMB) on angular scales spanning an arcminute to several degrees. The polarization sensitivity of SPTpol will enable a detection of the CMB "B-mode" polarization from the detection of the gravitational lensing of the CMB by large scale structure, and a detection or improved upper limit on a primordial signal due to inflationary gravity waves. The two measurements can be used to constrain the sum of the neutrino masses and the energy scale of inflation. These science goals can be achieved through the polarization sensitivity of the SPTpol camera and careful control of systematics. The SPTpol camera consists of 768 pixels, each containing two transition-edge sensor (TES) bolometers coupled to orthogonal polarizations, and a total of 1536 bolometers. The pixels are sensitive to light in one of two frequency bands centered at 90 and 150 GHz, with 180 pixels at 90 GHz and 588 pixels at 150 GHz. The SPTpol design has several features designed to control polarization systematics, including: single-moded feedhorns with low cross-polarization, bolometer pairs well-matched to difference atmospheric signals, an improved ground shield design based on far-sidelobe measurements of the SPT, and a small beam to reduce temperature to polarization leakage. We present an overview of the SPTpol instrument design, project status, and science projections.
  • Item
    Thumbnail Image
    Feedhorn-Coupled TES Polarimeter Camera Modules at 150 GHz for CMB Polarization Measurements with SPTpol
    Henning, JW ; Ade, P ; Aird, KA ; Austermann, JE ; Beall, JA ; Becker, D ; Benson, BA ; Bleem, LE ; Britton, J ; Carlstrom, JE ; Chang, CL ; Cho, H-M ; Crawford, TM ; Crites, AT ; Datesman, A ; de Haan, T ; Dobbs, MA ; Everett, W ; Ewall-Wice, A ; George, EM ; Halverson, NW ; Harrington, N ; Hilton, GC ; Holzapfel, WL ; Hubmayr, J ; Irwin, KD ; Karfunkle, M ; Keisler, R ; Kennedy, J ; Lee, AT ; Leitch, E ; Li, D ; Lueker, M ; Marrone, DP ; McMahon, JJ ; Mehl, J ; Meyer, SS ; Montgomery, J ; Montroy, TE ; Nagy, J ; Natoli, T ; Nibarger, JP ; Niemack, MD ; Novosad, V ; Padin, S ; Pryke, C ; Reichardt, CL ; Ruhl, JE ; Saliwanchik, BR ; Sayre, JT ; Schaffer, KK ; Shirokoff, E ; Stroy, K ; Tucker, C ; Vanderlinde, K ; Vieira, JD ; Wang, G ; Williamson, R ; Yefremenko, V ; Yoon, KW ; Young, E ; Holland, WS ; Zmuidzinas, J (SPIE-INT SOC OPTICAL ENGINEERING, 2012)
    The SPTpol camera is a dichroic polarimetric receiver at 90 and 150 GHz. Deployed in January 2012 on the South Pole Telescope (SPT), SPTpol is looking for faint polarization signals in the Cosmic Microwave Background (CMB). The camera consists of 180 individual Transition Edge Sensor (TES) polarimeters at 90 GHz and seven 84-polarimeter camera modules (a total of 588 polarimeters) at 150 GHz. We present the design, dark characterization, and in-lab optical properties of the 150 GHz camera modules. The modules consist of photolithographed arrays of TES polarimeters coupled to silicon platelet arrays of corrugated feedhorns, both of which are fabricated at NIST-Boulder. In addition to mounting hardware and RF shielding, each module also contains a set of passive readout electronics for digital frequency-domain multiplexing. A single module, therefore, is fully functional as a miniature focal plane and can be tested independently. Across the modules tested before deployment, the detectors average a critical temperature of 478 mK, normal resistance R_N of 1.2 Ohm, unloaded saturation power of 22.5 pW, (detector-only) optical efficiency of ~ 90%, and have electrothermal time constants < 1 ms in transition.