School of Geography - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Beyond one-way determinism: San Frediano’s miracle and climate change in Central and Northern Italy in late antiquity
    Zanchetta, G ; Bini, M ; Bloomfield, K ; Izdebski, A ; Vivoli, N ; Regattieri, E ; Isola, I ; Drysdale, RN ; Bajo, P ; Hellstrom, JC ; Wiśniewski, R ; Fallick, AE ; Natali, S ; Luppichini, M (Springer (part of Springer Nature), 2021-03-20)
    Integrating palaeoclimatological proxies and historical records, which is necessary to achieve a more complete understanding of climate impacts on past societies, is a challenging task, often leading to unsatisfactory and even contradictory conclusions. This has until recently been the case for Italy, the heart of the Roman Empire, during the transition between Antiquity and the Middle Ages. In this paper, we present new high-resolution speleothem data from the Apuan Alps (Central Italy). The data document a period of very wet conditions in the sixth c. AD, probably related to synoptic atmospheric conditions similar to a negative phase of the North Atlantic Oscillation. For this century, there also exist a significant number of historical records of extreme hydroclimatic events, previously discarded as anecdotal. We show that this varied evidence reflects the increased frequency of floods and extreme rainfall events in Central and Northern Italy at the time. Moreover, we also show that these unusual hydroclimatic conditions overlapped with the increased presence of “water miracles” in Italian hagiographical accounts and social imagination. The miracles, performed by local Church leaders, strengthened the already growing authority of holy bishops and monks in Italian society during the crucial centuries that followed the “Fall of the Roman Empire”. Thus, the combination of natural and historical data allows us to show the degree to which the impact of climate variability on historical societies is determined not by the nature of the climatic phenomena per se, but by the culture and the structure of the society that experienced it.
  • Item
    No Preview Available
    Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition
    Bajo, P ; Drysdale, RN ; Woodhead, JD ; Hellstrom, JC ; Hodell, D ; Ferretti, P ; Voelker, AHL ; Zanchetta, G ; Rodrigues, T ; Wolff, E ; Tyler, J ; Frisia, S ; Spotl, C ; Fallick, AE (AMER ASSOC ADVANCEMENT SCIENCE, 2020-03-13)
    Radiometric dating of glacial terminations over the past 640,000 years suggests pacing by Earth's climatic precession, with each glacial-interglacial period spanning four or five cycles of ~20,000 years. However, the lack of firm age estimates for older Pleistocene terminations confounds attempts to test the persistence of precession forcing. We combine an Italian speleothem record anchored by a uranium-lead chronology with North Atlantic ocean data to show that the first two deglaciations of the so-called 100,000-year world are separated by two obliquity cycles, with each termination starting at the same high phase of obliquity, but at opposing phases of precession. An assessment of 11 radiometrically dated terminations spanning the past million years suggests that obliquity exerted a persistent influence on not only their initiation but also their duration.
  • Item
    Thumbnail Image
    Magnesium in subaqueous speleothems as a potential palaeotemperature proxy
    Drysdale, R ; Couchoud, I ; Zanchetta, G ; Isola, I ; Regattieri, E ; Hellstrom, J ; Govin, A ; Tzedakis, PC ; Ireland, T ; Corrick, E ; Greig, A ; Wong, H ; Piccini, L ; Holden, P ; Woodhead, J (NATURE RESEARCH, 2020-10-06)
    Few palaeoclimate archives beyond the polar regions preserve continuous and datable palaeotemperature proxy time series over multiple glacial-interglacial cycles. This hampers efforts to develop a more coherent picture of global patterns of past temperatures. Here we show that Mg concentrations in a subaqueous speleothem from an Italian cave track regional sea-surface temperatures over the last 350,000 years. The Mg shows higher values during warm climate intervals and converse patterns during cold climate stages. In contrast to previous studies, this implicates temperature, not rainfall, as the principal driver of Mg variability. The depositional setting of the speleothem gives rise to Mg partition coefficients that are more temperature dependent than other calcites, enabling the effect of temperature change on Mg partitioning to greatly exceed the effects of changes in source-water Mg/Ca. Subaqueous speleothems from similar deep-cave environments should be capable of providing palaeotemperature information over multiple glacial-interglacial cycles.
  • Item
    Thumbnail Image
    Hydrological changes during the Roman Climatic Optimum in northern Tuscany (Central Italy) as evidenced by speleothem records and archaeological data
    Bini, M ; Zanchetta, G ; Regattieri, E ; Isola, I ; Drysdale, RN ; Fabiani, F ; Genovesi, S ; Hellstrom, JC (WILEY, 2020-08)
    ABSTRACT Study of the climate in the Mediterranean basin during different historical periods has taken on a particular importance, particularly regarding its role (together with other factors) in the evolution of human settlement patterns. Although the Roman age is traditionally considered a period with a favourable climate, recent studies have revealed considerable complexity in terms of regional climate variations. In this paper, we compare the hydrological change from speleothem proxy records with flood reconstructions from archaeological sites for Northern Tuscany (central Italy). We identify a period of oscillating climatic conditions culminating in a multidecadal dry event during the 1st century bc, followed by a century of increased precipitation at the beginning of the Roman Empire and subsequently a return to drier conditions in the 2nd century ad. The period of rainfall increase documented by the speleothems agrees with both the archaeological flood record as well as historical flood data available for the Tiber River, ca. 300 km to the south. These data also suggest a return to wetter conditions following the 3nd and 4rd centuries ad.
  • Item
    Thumbnail Image
    Holocene Critical Zone dynamics in an Alpine catchment inferred from a speleothem multiproxy record: disentangling climate and human influences
    Regattieri, E ; Zanchetta, G ; Isola, I ; Zanella, E ; Drysdale, RN ; Hellstrom, JC ; Zerboni, A ; Dallai, L ; Tema, E ; Lanci, L ; Costa, E ; Magri, F (NATURE PUBLISHING GROUP, 2019-11-28)
    Disentangling the effects of climate and human impact on the long-term evolution of the Earth Critical Zone is crucial to understand the array of its potential responses to the ongoing Global Change. This task requires natural archives from which local information about soil and vegetation can be linked directly to climate parameters. Here we present a high-resolution, well-dated, speleothem multiproxy record from the SW Italian Alps, spanning the last ~10,000 years of the present interglacial (Holocene). We correlate magnetic properties and the carbon stable isotope ratio to soil stability and pedogenesis, whereas the oxygen isotope composition is interpreted as primarily related to precipitation amount, modulated at different timescales by changes in precipitation source and seasonality. During the 9.7-2.8 ka period, when anthropic pressure over the catchment was scarce, intervals of enhanced soil erosion are related to climate-driven vegetation contractions and occurred during drier periods. Immediately following the onset of the Iron Age (ca. 2.8 ka), by contrast, periods of enhanced soil erosion coincided with a wetter climate. We propose that the observed changes in the soil response to climate forcing were related to early anthropogenic manipulations of Earth's surface, which made the ECZ more sensitive to climate oscillations.
  • Item
    Thumbnail Image
    The antiquity of Nullarbor speleothems and implications for karst palaeoclimate archives
    Woodhead, JD ; Sniderman, JMK ; Hellstrom, J ; Drysdale, RN ; Maas, R ; White, N ; White, S ; Devine, P (NATURE PUBLISHING GROUP, 2019-01-24)
    Speleothems represent important archives of terrestrial climate variation that host a variety of proxy signals and are also highly amenable to radiometric age determination. Although speleothems have been forming on Earth for at least 400 million years, most studies rely upon the U-Th chronometer which extends only to the mid Pleistocene, leaving important questions over their longer-term preservation potential. To date, older records, exploiting the advantages of the U-Pb chronometer, remain fragmentary 'snapshots in time'. Here we demonstrate the viability of speleothems as deep time climate archives by showing that a vast system of shallow caves beneath the arid Nullarbor plain of southern Australia, the world's largest exposed karst terrain, formed largely within the Pliocene epoch, with a median age of 4.2 Ma, and that, in these caves, even the most delicate formations date from this time. The long-term preservation of regional-scale cave networks such as this demonstrates that abundant speleothem archives do survive to permit the reconstruction of climates and environments for much older parts of Earth history than the ~600 ka period to which most previous studies have been limited.
  • Item
    Thumbnail Image
    "Cryptic" diagenesis and its implications for speleothem geochronologies
    Bajo, P ; Hellstrom, J ; Frisia, S ; Drysdale, R ; Black, J ; Woodhead, J ; Borsato, A ; Zanchetta, G ; Wallace, MW ; Regattieri, E ; Haese, R (Elsevier, 2016-09-15)
    Speleothems are usually considered as one of the most amenable palaeoclimate archives for U-series dating. A number of studies in recent years, however, report cases of diagenetic alteration which compromises the use of U-series systematics in speleothems, resulting in inaccurate U-Th ages. Here we present the results of a high-resolution U-Th dating study of a stalagmite (CC26) from Corchia Cave in Italy where we document a number of departures from an otherwise well-defined age-depth model, and explore potential causes for these outliers. Unlike examples illustrated in previous studies, CC26 contains no visible evidence of neomorphism, and appears, at least superficially, ideally suited to dating. Good reproducibility obtained between multi-aliquot U-Th analyses removes any possibility of analytical issues contributing to these outliers. Furthermore, replicate analyses of samples from the same stratigraphic layer yielded ages in stratigraphic sequence, implying very localized open-system behavior. Uranium loss is suggested as a causative mechanism on account of the fact that all the outliers are older than their assumed true age. A limited number of micro-voids were observed under micro-CT analyses, and it is proposed that these were pathways for U loss. Uranium-loss modelling allows us to constrain the possible timing of diagenetic alteration and indicates that the precursor for the outlier with the largest age discrepancy (309%) must have been aragonite. This study indicates that visibly unaltered speleothems may still contain small domains that have experienced post-depositional alteration. Such “cryptic” diagenesis, as recorded in this stalagmite, has implications for the constancy of accuracy of the U-series dating technique, and suggests a need for careful examination of speleothems prior to dating, particularly in low-resolution U-Th studies.
  • Item
    Thumbnail Image
    Western Pacific hydroclimate linked to global climate variability over the past two millennia
    Griffiths, ML ; Kimbrough, AK ; Gagan, MK ; Drysdale, RN ; Cole, JE ; Johnson, KR ; Zhao, J-X ; Cook, BI ; Hellstrom, JC ; Hantoro, WS (NATURE PORTFOLIO, 2016-06)
    Interdecadal modes of tropical Pacific ocean-atmosphere circulation have a strong influence on global temperature, yet the extent to which these phenomena influence global climate on multicentury timescales is still poorly known. Here we present a 2,000-year, multiproxy reconstruction of western Pacific hydroclimate from two speleothem records for southeastern Indonesia. The composite record shows pronounced shifts in monsoon rainfall that are antiphased with precipitation records for East Asia and the central-eastern equatorial Pacific. These meridional and zonal patterns are best explained by a poleward expansion of the Australasian Intertropical Convergence Zone and weakening of the Pacific Walker circulation (PWC) between ∼1000 and 1500 CE Conversely, an equatorward contraction of the Intertropical Convergence Zone and strengthened PWC occurred between ∼1500 and 1900 CE. Our findings, together with climate model simulations, highlight the likelihood that century-scale variations in tropical Pacific climate modes can significantly modulate radiatively forced shifts in global temperature.
  • Item
    Thumbnail Image
    The influence of Antarctic subglacial volcanism on the global iron cycle during the Last Glacial Maximum
    Frisia, S ; Weyrich, LS ; Hellstrom, J ; Borsato, A ; Golledge, NR ; Anesio, AM ; Bajo, P ; Drysdale, RN ; Augustinus, PC ; Rivard, C ; Cooper, A (Nature Research, 2017-06-09)
    Marine sediment records suggest that episodes of major atmospheric CO2 drawdown during the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters. The principal source of this Fe is thought to be dust transported from southern mid-latitude deserts. However, uncertainty exists over contributions to CO2 sequestration from complementary Fe sources, such as the Antarctic ice sheet, due to the difficulty of locating and interrogating suitable archives that have the potential to preserve such information. Here we present petrographic, geochemical and microbial DNA evidence preserved in precisely dated subglacial calcites from close to the East Antarctic Ice-Sheet margin, which together suggest that volcanically-induced drainage of Fe-rich waters during the Last Glacial Maximum could have reached the Southern Ocean. Our results support a significant contribution of Antarctic volcanism to subglacial transport and delivery of nutrients with implications on ocean productivity at peak glacial conditions.
  • Item
    Thumbnail Image
    Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial
    Tzedakis, PC ; Drysdale, RN ; Margari, V ; Skinner, LC ; Menviel, L ; Rhodes, RH ; Taschetto, AS ; Hodell, DA ; Crowhurst, SJ ; Hellstrom, JC ; Fallick, AE ; Grimalt, JO ; McManus, JF ; Martrat, B ; Mokeddem, Z ; Parrenin, F ; Regattieri, E ; Roe, K ; Zanchetta, G (NATURE PUBLISHING GROUP, 2018-10-12)
    Considerable ambiguity remains over the extent and nature of millennial/centennial-scale climate instability during the Last Interglacial (LIG). Here we analyse marine and terrestrial proxies from a deep-sea sediment sequence on the Portuguese Margin and combine results with an intensively dated Italian speleothem record and climate-model experiments. The strongest expression of climate variability occurred during the transitions into and out of the LIG. Our records also document a series of multi-centennial intra-interglacial arid events in southern Europe, coherent with cold water-mass expansions in the North Atlantic. The spatial and temporal fingerprints of these changes indicate a reorganization of ocean surface circulation, consistent with low-intensity disruptions of the Atlantic meridional overturning circulation (AMOC). The amplitude of this LIG variability is greater than that observed in Holocene records. Episodic Greenland ice melt and runoff as a result of excess warmth may have contributed to AMOC weakening and increased climate instability throughout the LIG.