Medicine and Radiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Metabolic patterns and seizure outcomes following anterior temporal lobectomy
    Cahill, V ; Sinclair, B ; Malpas, CB ; McIntosh, AM ; Chen, Z ; Vivash, LE ; O'Shea, MF ; Wilson, SJ ; Desmond, PM ; Berlangieri, SU ; Hicks, RJ ; Rowe, CC ; Morokoff, AP ; King, JA ; Fabinyi, GC ; Kaye, AH ; Kwan, P ; Berkovic, SF ; O'Brien, TJ (WILEY, 2019-02)
    OBJECTIVE: We investigated the relationship between the interictal metabolic patterns, the extent of resection of 18 F-fluorodeoxyglucose positron emission tomography (18 FDG-PET) hypometabolism, and seizure outcomes in patients with unilateral drug-resistant mesial temporal lobe epilepsy (MTLE) following anterior temporal lobe (TL) resection. METHODS: Eighty-two patients with hippocampal sclerosis or normal magnetic resonance imaging (MRI) findings, concordant 18 FDG-PET hypometabolism, and at least 2 years of postoperative follow-up were included in this 2-center study. The hypometabolic regions in each patient were identified with reference to 20 healthy controls (p < 0.005). The resected TL volume and the volume of resected TL PET hypometabolism (TLH) were calculated from the pre- and postoperative MRI scans coregistered with interictal 18 FDG-PET. RESULTS: Striking differences in metabolic patterns were observed depending on the lateralization of the epileptogenic TL. The extent of the ipsilateral TLH was significantly greater in left MTLE patients (p < 0.001), whereas right MTLE patients had significantly higher rates of contralateral (CTL) TLH (p = 0.016). In right MTLE patients, CTL hypometabolism was the strongest predictor of an unfavorable seizure outcome, associated with a 5-fold increase in the likelihood of seizure recurrence (odds ratio [OR] = 4.90, 95% confidence interval [CI] = 1.07-22.39, p = 0.04). In left MTLE patients, greater extent of resection of ipsilateral TLH was associated with lower rates of seizure recurrence (p = 0.004) in univariate analysis; however, its predictive value did not reach statistical significance (OR = 0.96, 95% CI = 0.90-1.02, p = 0.19). INTERPRETATION: The difference in metabolic patterns depending on the lateralization of MTLE may represent distinct epileptic networks in patients with right versus left MTLE, and can guide preoperative counseling and surgical planning. Ann Neurol 2019; 1-10 ANN NEUROL 2019;85:241-250.
  • Item
    Thumbnail Image
    A population-based cost-effectiveness study of early genetic testing in severe epilepsies of infancy
    Howell, KB ; Eggers, S ; Dalziel, K ; Riseley, J ; Mandelstam, S ; Myers, CT ; McMahon, JM ; Schneider, A ; Carvill, GL ; Mefford, HC ; Scheffer, IE ; Harvey, AS (WILEY, 2018-06)
    OBJECTIVE: The severe epilepsies of infancy (SEI) are a devastating group of disorders that pose a major care and economic burden on society; early diagnosis is critical for optimal management. This study sought to determine the incidence and etiologies of SEI, and model the yield and cost-effectiveness of early genetic testing. METHODS: A population-based study was undertaken of the incidence, etiologies, and cost-effectiveness of a whole exome sequencing-based gene panel (targeted WES) in infants with SEI born during 2011-2013, identified through electroencephalography (EEG) and neonatal databases. SEI was defined as seizure onset before age 18 months, frequent seizures, epileptiform EEG, and failure of ≥2 antiepileptic drugs. Medical records, investigations, MRIs, and EEGs were analyzed, and genetic testing was performed if no etiology was identified. Economic modeling was performed to determine yield and cost-effectiveness of investigation of infants with unknown etiology at epilepsy onset, incorporating targeted WES at different stages of the diagnostic pathway. RESULTS: Of 114 infants with SEI (incidence = 54/100 000 live births/y), the etiology was determined in 76 (67%): acquired brain injuries (n = 14), focal cortical dysplasias (n = 14), other brain malformations (n = 17), channelopathies (n = 11), chromosomal (n = 9), metabolic (n = 6), and other genetic (n = 5) disorders. Modeling showed that incorporating targeted WES increased diagnostic yield compared to investigation without targeted WES (48/86 vs 39/86). Early targeted WES had lower total cost ($677 081 U.S. dollars [USD] vs $738 136 USD) than late targeted WES. A pathway with early targeted WES and limited metabolic testing yielded 7 additional diagnoses compared to investigation without targeted WES (46/86 vs 39/86), with lower total cost ($455 597 USD vs $661 103 USD), lower cost per diagnosis ($9904 USD vs $16 951 USD), and a dominant cost-effectiveness ratio. SIGNIFICANCE: Severe epilepsies occur in 1 in 2000 infants, with the etiology identified in two-thirds, most commonly malformative. Early use of targeted WES yields more diagnoses at lower cost. Early genetic diagnosis will enable timely administration of precision medicines, once developed, with the potential to improve long-term outcome.