Medicine and Radiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    A continuum of T-2(*) components: Flexible fast fraction mapping in sodium MRI
    Syeda, W ; Blunck, Y ; Kolbe, S ; Cleary, JO ; Johnston, LA (WILEY, 2019-06-01)
    PURPOSE: Parameter mapping in sodium MRI data is challenging due to inherently low SNR and spatial resolution, prompting the need to employ robust models and estimation techniques. This work aims to develop a continuum model of sodium T 2 * -decay to overcome the limitations of the commonly employed bi-exponential models. Estimates of mean T 2 * -decay and fast component fraction in tissue are emergent from the inferred continuum model. METHODS: A closed-form continuum model was derived assuming a gamma distribution of T 2 * components. Sodium MRI was performed on four healthy human subjects and a phantom consisting of closely packed vials filled with an aqueous solution of varying sodium and agarose concentrations. The continuum model was applied to the phantom and in vivo human multi-echo 7T data. Parameter maps by voxelwise model-fitting were obtained. RESULTS: The continuum model demonstrated comparable estimation performance to the bi-exponential model. The parameter maps provided improved contrast between tissue structures. The fast component fraction, an indicator of the heterogeneity of localised sodium motion regimes in tissue, was zero in CSF and high in WM structures. CONCLUSIONS: The continuum distribution model provides high quality, high contrast parameter maps, and informative voxelwise estimates of the relative weighting between fast and slow decay components.
  • Item
    Thumbnail Image
    Zero-gradient-excitation ramped hybrid encoding (zG(RF)-RHE) sodium MRI
    Blunck, Y ; Moffat, BA ; Kolbe, SC ; Ordidge, RJ ; Cleary, JO ; Johnston, LA (WILEY, 2019-02-01)
    PURPOSE: Fast bi-exponential transverse signal decay compounds sodium image quality. This work aims at enhancing image characteristics using a special case of ramped hybrid encoding (RHE). Zero-gradient-excitation (zGRF )-RHE provides (1) gradient-free excitation for high flip angle, artifact-free excitation profiles and (2) gradient ramping during dead-time for the optimization of encoding time (tenc ) to reduce T2 * signal decay influence during acquisition. METHODS: Radial zGRF -RHE and standard radial UTE were investigated over a range of receiver bandwidths in simulations, phantom and in vivo brain experiments. Central k-space in zGRF -RHE was acquired through single point measurements at the minimum achievable TE. T2 * blurring artifacts and image SNR and CNR were assessed. RESULTS: zGRF -RHE enabled 90° flip angle artifact-free excitation, whereas gradient pre-ramping provided greater tenc efficiency for any readout bandwidths. Experiments confirmed simulation results, revealing sharper edge characteristics particularly at short readout durations (TRO ). Significant SNR improvements of up to 4.8% were observed for longer TRO . CONCLUSION: zGRF -RHE allows for artifact-free high flip angle excitation with time-efficient encoding improving on image characteristics. This hybrid encoding concept with gradient pre-ramping is trajectory independent and can be introduced in any center-out UTE trajectory design.
  • Item
    Thumbnail Image
    Visual search efficiency and functional visual cortical size in children with and without dyslexia
    Nguyen, BN ; Kolbe, SC ; Verghese, A ; Nearchou, C ; McKendrick, AM ; Egan, GF ; Vidyasagar, TR (Elsevier, 2021-05-14)
    Dyslexia is characterised by poor reading ability. Its aetiology is probably multifactorial, with abnormal visual processing playing an important role. Among adults with normal reading ability, there is a larger representation of central visual field in the primary visual cortex (V1) in those with more efficient visuospatial attention. In this study, we tested the hypothesis that poor reading ability in school-aged children (17 children with dyslexia, 14 control children with normal reading ability) is associated with deficits in visuospatial attention using a visual search task. We corroborated the psychophysical findings with neuroimaging, by measuring the functional size of V1 in response to a central 12° visual stimulus. Consistent with other literature, visual search was impaired and less efficient in the dyslexic children, particularly with more distractor elements in the search array (p=0.04). We also found atypical interhemispheric asymmetry in functional V1 size in the dyslexia group (p=0.02). Reading impaired children showed poorer visual search efficiency (p=0.01), needing more time per unit distractor (higher ms/item). Reading ability was also correlated with V1 size asymmetry (p=0.03), such that poorer readers showed less left hemisphere bias relative to the right hemisphere. Our findings support the view that dyslexic children have abnormal visuospatial attention and interhemispheric V1 asymmetry, relative to chronological age-matched peers, and that these factors may contribute to inter-individual variation in reading performance in children.
  • Item
    No Preview Available
    MR-EYE: High-Resolution MRI of the Human Eye and Orbit at Ultrahigh Field (7T)
    Glarin, RK ; Nguyen, BN ; Cleary, JO ; Kolbe, SC ; Ordidge, RJ ; Bui, B ; McKendrick, AM ; Moffat, BA (Elsevier, 2021-02-01)
    Key points • Dedicated eye imaging can be implemented at 7T to acquire high-resolution, high contrast-to-noise, and high signal-to-noise images in a feasible imaging time suitable for clinical use. • Simple, reproducible participant preparation techniques can be adopted to reduce the motion of the eye leading to a reduction in subsequent artefacts. • Sequences available at ultrahigh field can be used in current 7T clinical applications to visualize ocular structures otherwise impossible with other ophthalmic imaging.
  • Item
    Thumbnail Image
    Ultra-High Field Magnetic Resonance Imaging of the Retrobulbar Optic Nerve, Subarachnoid Space, and Optic Nerve Sheath in Emmetropic and Myopic Eyes
    Nguyen, BN ; Cleary, JO ; Glarin, R ; Kolbe, SC ; Moffat, BA ; Ordidge, RJ ; Bui, BV ; McKendrick, AM (Association for Research in Vision and Ophthalmology (ARVO), 2021-02-09)
    Purpose: We aimed to image the optic nerve, subarachnoid space and optic nerve sheath in emmetropes and myopes ultra-high field (7-Tesla) magnetic resonance imaging (MRI). We targeted the retrobulbar distance of approximately 3 mm behind the eyeball, an area of clinical interest because of optic nerve sheath distensibility and pressure-related enlargement. Methods: Eleven emmetropes (+0.75 to −0.50D, aged 20–41 years) and 10 myopes (−4.5 to −12D, aged 21–37 years) participated. Cross-sectional area of the optic nerve, subarachnoid space and optic nerve sheath at approximately 3 mm behind the eye were measured from two-dimensional T2-weighted coronal oblique MRI images obtained through the left optic nerve. Axial length of the left eye was measured from T2-weighted axial MRI images. In nine emmetropes and seven myopes, the optic nerve head was imaged with optical coherence tomography to compare retrobulbar and intraocular measures. Results: Retrobulbar optic nerve, subarachnoid space and optic nerve sheath dimensions differed between myopes and emmetropes. Myopes tended to have smaller optic nerve and subarachnoid space. Longer MRI-derived axial length was associated with smaller optic nerve area (P = 0.03). Bruch's membrane opening area did not predict retrobulbar optic nerve area (P = 0.48). Conclusions: This study demonstrates the feasibility of using 7-Tesla MRI to measure optic nerve, subarachnoid space, and optic nerve sheath dimensions behind the eye. In healthy adults, the retrobulbar optic nerve and subarachnoid space size are influenced by the degree of myopia. Translational Relevance: ultra-high field MRI is a practical tool for assessing the morphometry of the optic nerve and surrounding anatomy behind the eye.
  • Item
    Thumbnail Image
    Social Isolation Alters Social and Mating Behavior in the R451C Neuroligin Mouse Model of Autism
    Burrows, EL ; Eastwood, AF ; May, C ; Kolbe, SC ; Hill, T ; McLachlan, NM ; Churilov, L ; Hannan, AJ (HINDAWI LTD, 2017-01-01)
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder typified by impaired social communication and restrictive and repetitive behaviors. Mice serve as an ideal candidate organism for studying the neural mechanisms that subserve these symptoms. The Neuroligin-3 (NL3) mouse, expressing a R451C mutation discovered in two Swedish brothers with ASD, exhibits impaired social interactions and heightened aggressive behavior towards male mice. Social interactions with female mice have not been characterized and in the present study were assessed in male NL3R451C and WT mice. Mice were housed in social and isolation conditions to test for isolation-induced increases in social interaction. Tests were repeated to investigate potential differences in interaction in naïve and experienced mice. We identified heightened interest in mating and atypical aggressive behavior in NL3R451C mice. NL3R451C mice exhibited normal social interaction with WT females, indicating that abnormal aggressive behavior towards females is not due to altered motivation to engage. Social isolation rearing heightened interest in social behavior in all mice. Isolation housing selectively modulated the response to female pheromones in NL3R451C mice. This study is the first to show altered mating behavior in the NL3R451C mouse and has provided new insights into the aggressive phenotype in this model.