Medicine and Radiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Zero-gradient-excitation ramped hybrid encoding (zG(RF)-RHE) sodium MRI
    Blunck, Y ; Moffat, BA ; Kolbe, SC ; Ordidge, RJ ; Cleary, JO ; Johnston, LA (WILEY, 2019-02-01)
    PURPOSE: Fast bi-exponential transverse signal decay compounds sodium image quality. This work aims at enhancing image characteristics using a special case of ramped hybrid encoding (RHE). Zero-gradient-excitation (zGRF )-RHE provides (1) gradient-free excitation for high flip angle, artifact-free excitation profiles and (2) gradient ramping during dead-time for the optimization of encoding time (tenc ) to reduce T2* signal decay influence during acquisition. METHODS: Radial zGRF -RHE and standard radial UTE were investigated over a range of receiver bandwidths in simulations, phantom and in vivo brain experiments. Central k-space in zGRF -RHE was acquired through single point measurements at the minimum achievable TE. T2* blurring artifacts and image SNR and CNR were assessed. RESULTS: zGRF -RHE enabled 90° flip angle artifact-free excitation, whereas gradient pre-ramping provided greater tenc efficiency for any readout bandwidths. Experiments confirmed simulation results, revealing sharper edge characteristics particularly at short readout durations (TRO ). Significant SNR improvements of up to 4.8% were observed for longer TRO . CONCLUSION: zGRF -RHE allows for artifact-free high flip angle excitation with time-efficient encoding improving on image characteristics. This hybrid encoding concept with gradient pre-ramping is trajectory independent and can be introduced in any center-out UTE trajectory design.
  • Item
    No Preview Available
    MR-EYE: High-Resolution MRI of the Human Eye and Orbit at Ultrahigh Field (7T)
    Glarin, RK ; Nguyen, BN ; Cleary, JO ; Kolbe, SC ; Ordidge, RJ ; Bui, B ; McKendrick, AM ; Moffat, BA (Elsevier, 2021-02-01)
    Key points • Dedicated eye imaging can be implemented at 7T to acquire high-resolution, high contrast-to-noise, and high signal-to-noise images in a feasible imaging time suitable for clinical use. • Simple, reproducible participant preparation techniques can be adopted to reduce the motion of the eye leading to a reduction in subsequent artefacts. • Sequences available at ultrahigh field can be used in current 7T clinical applications to visualize ocular structures otherwise impossible with other ophthalmic imaging.
  • Item
    Thumbnail Image
    Ultra-High Field Magnetic Resonance Imaging of the Retrobulbar Optic Nerve, Subarachnoid Space, and Optic Nerve Sheath in Emmetropic and Myopic Eyes
    Nguyen, BN ; Cleary, JO ; Glarin, R ; Kolbe, SC ; Moffat, BA ; Ordidge, RJ ; Bui, BV ; McKendrick, AM (Association for Research in Vision and Ophthalmology (ARVO), 2021-02-09)
    Purpose: We aimed to image the optic nerve, subarachnoid space and optic nerve sheath in emmetropes and myopes ultra-high field (7-Tesla) magnetic resonance imaging (MRI). We targeted the retrobulbar distance of approximately 3 mm behind the eyeball, an area of clinical interest because of optic nerve sheath distensibility and pressure-related enlargement. Methods: Eleven emmetropes (+0.75 to −0.50D, aged 20–41 years) and 10 myopes (−4.5 to −12D, aged 21–37 years) participated. Cross-sectional area of the optic nerve, subarachnoid space and optic nerve sheath at approximately 3 mm behind the eye were measured from two-dimensional T2-weighted coronal oblique MRI images obtained through the left optic nerve. Axial length of the left eye was measured from T2-weighted axial MRI images. In nine emmetropes and seven myopes, the optic nerve head was imaged with optical coherence tomography to compare retrobulbar and intraocular measures. Results: Retrobulbar optic nerve, subarachnoid space and optic nerve sheath dimensions differed between myopes and emmetropes. Myopes tended to have smaller optic nerve and subarachnoid space. Longer MRI-derived axial length was associated with smaller optic nerve area (P = 0.03). Bruch's membrane opening area did not predict retrobulbar optic nerve area (P = 0.48). Conclusions: This study demonstrates the feasibility of using 7-Tesla MRI to measure optic nerve, subarachnoid space, and optic nerve sheath dimensions behind the eye. In healthy adults, the retrobulbar optic nerve and subarachnoid space size are influenced by the degree of myopia. Translational Relevance: ultra-high field MRI is a practical tool for assessing the morphometry of the optic nerve and surrounding anatomy behind the eye.