Surgery (RMH) - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Deconstructing the brain tumour microenvironment using multimodal analysis
    Dinevska, Marija ( 2023-06)
    Gliomas are a type of astrocytoma and are the most prevalent type of primary brain cancer, with the most aggressive form being glioblastoma (GBM), with a median survival of only 15 months. Rapid tumour cell invasion and progression is a significant challenge for patients and their oncologists and neurosurgeons, reducing treatment efficacy and inevitably leading to tumour recurrence. Cancer cells thrive by responding and adapting to cellular and non-cellular cues in the tumour microenvironment, including the extracellular matrix (ECM). However, little is known about ECM composition in brain tumours and how the ECM evolves during disease progression, and the impact of the ECM on immune cell localisation, cancer cell signalling and the functional activity of tumour cells. The PI3K and MAPK signalling pathways are typically dysregulated in GBM, and can activate the downstream transcription factor, CREB, which has been reported to regulate GBM malignancy. By integrating multiplex immunohistochemistry, histopathological staining, and spatial tissue analysis, as well as in vitro 3D GBM models, I investigated ECM composition in low- and high-grade glioma, and the spatial relationship between neoplastic cells, immune cells and the ECM in GBM tissue. My results demonstrated a grade-dependent increase in ECM deposition and an upregulation of type I and type IV collagen mRNA expression, which is associated with poor survival in patients with GBM. GBM cells and vascular cells were identified as key contributors of ECM protein deposition in GBM. Spatial analysis demonstrated that T-cells were predominantly located in perivascular niches in ECM-rich regions, while macrophages exhibited more efficient infiltration into tumour cell-rich regions. Extensive tissue remodelling contributes to cellular compartmentalisation in the tumour microenvironment and this compartmentalisation correlates with PI3K, MAPK and CREB activity, and histopathological hallmarks, including angiogenesis, tumour cell density and cell invasion. Inhibiting the PI3K and MAPK signalling pathways reduced 3D cell invasion and also facilitated a shift in the ECM composition, from a more fibrotic to a less fibrotic state. Taken together, the results suggest that the accumulation of ECM plays an important role in GBM progression, affecting both immune cell distribution and cancer cell signalling. These findings suggest that targeting the PI3K and MAPK pathways to ‘normalise’ the ECM could serve to enhance the efficacy of existing and novel therapies for GBM.