Surgery (RMH) - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Evaluating the role of invadopodia in glioma invasion and response to therapeutics
    Whitehead, Clarissa Anne ( 2021)
    Glioblastoma (GBM) is the most prevalent and aggressive form of glioma, and is associated with an extremely poor prognosis, with a low median patient survival time of just 15 months post-diagnosis with the current therapeutic approach known as the Stupp protocol, consisting of surgical resection, followed by radiotherapy (RT) and concomitant chemotherapy with temozolomide (TMZ). A significant contributing factor that impacts the survival of GBM patients is the highly infiltrative nature of GBM cells, which prevents complete tumour resection and also limits the capacity of targeted therapies to effectively reach the infiltrating tumour cells. Consequently, these tumours can exhibit high rates of recurrence, appearing within months following the completion of the first round of treatment and can also demonstrate minimal response to further rounds of RT/TMZ treatment. Evidence suggests that the efficacy of current therapeutic approach may be compromised by an enhanced invasive phenotype that is displayed by the GBM cells that survive the current treatment protocol (Wild-Bode, Weller et al. 2001, Cordes, Hansmeier et al. 2003, Hegedus, Zach et al. 2004, Trog, Fountoulakis et al. 2006, Trog, Yeghiazaryan et al. 2006, Steinle, Palme et al. 2011). The targeting of the enhanced invasive abilities exhibited by RT/TMZ treated GBM cells could provide a potential therapeutic approach for improving patient outcome, however the mechanisms utilised by invasive GBM cells following the current treatment are not well understood. As GBM cells have been shown to form actin-rich membrane protrusions known as invadopodia that can facilitate invasion by degrading the surrounding ECM via highly localised proteolytic activity (Stylli, Kaye et al. 2008, Mao, Whitehead et al. 2017, Petropoulos, Guichet et al. 2018), it is possible that the enhanced invasive capabilities of GBM cells post- RT/TMZ treatment may be mediated by invadopodia. In this thesis, the role of invadopodia in GBM cell invasion and response to RT/TMZ treatment was investigated. Using clinically relevant doses of RT and TMZ, it was demonstrated that the enhanced invasive capabilities of GBM cells post-RT/TMZ treatment may be attributed to an increase in invadopodia formation and activity. The role of intracellular communication between GBM cells via small extracellular vesicles (sEVs) was also investigated, highlighting the ability of GBM cell line secreted sEVs to transfer a pro-invadopodia phenotype to recipient GBM cells, as well as their potential to facilitate an enhanced pro-invadopodia phenotype following RT/TMZ treatment. Demonstrating the potential to dualistically target invadopodia activity and sEV secretion to overcome RT/TMZ-induced GBM invasion, the addition of the microtubule-targeting agent Vinorelbine Tartrate (VT) alongside RT/TMZ reduced the enhanced secretion of sEVs, in accordance with previous data from our laboratory showing VT also reduces invadopodia activity in GBM cells surviving RT/TMZ (Whitehead, Nguyen et al. 2018). Lastly, GBM cell lines and their corresponding secreted sEVs were subjected to comprehensive proteomic profiling to identify proteins that may facilitate invadopodia formation and activity following exposure to RT/TMZ treatment, thereby contributing to enhanced GBM invasion. Collectively, this work highlights the contributing role of invadopodia and sEVs to the pro-invasive abilities of GBM cells, and provides insight into the dysregulated proteomic landscape of GBM cells and sEVs following exposure to RT/TMZ treatment that may contribute to enhanced invasive capacity, which may ultimately assist in the development of novel adjuvant therapeutic strategies to improve the clinical efficacy of RT and TMZ treatment.
  • Item
    Thumbnail Image
    The role of receptor tyrosine kinases in mediating glioblastoma resistance to radiotherapy and temozolomide
    Areeb, Mohamed Zammam ( 2020)
    Glioblastoma is the most common and aggressive form of malignant glioma. Currently, despite treatment with surgery followed by radiotherapy and the chemotherapeutic agent temozolomide (TMZ), mean patient survival time is approximately 12 months and the 5-year survival rate is close to 0%. A key factor for the dismal prognosis is tumour recurrence post-treatment which is largely due to: 1) the infiltrative nature of glioblastoma rendering complete resection impossible and 2) glioblastoma cell resistance to radio-chemotherapy. In this thesis we aimed to investigate the cellular mechanisms of receptor tyrosine kinases in conferring resistance to therapy. We first performed a literature search and found that almost all studies that advocated for the utility of targeting RTKs in overcoming treatment resistance did not employ both therapeutic agents comprising standard therapy – radiotherapy and TMZ. We next generated an in vitro glioblastoma resistant model via short-term treatment with radiotherapy and TMZ and found that these cells had down-regulated RTK activity in addition to down-regulated protein and gene expression of the commonly altered and studied epidermal growth factor receptor (EGFR) and MET receptor. After generating an in vitro glioblastoma recurrent model via long-term treatment we demonstrated that the surviving sub-population of cells also displayed down-regulated EGFR and MET expression compared to treatment naive cells. Furthermore, we also showed that the resistant cell population already pre-exists within the parental population which suggests the possibility of pre-emptively targeting the inherently resistant population. Interestingly, we also observed differential microRNA expression in radiotherapy- and TMZ-treated cells and, specifically, found that miR-221 confers resistance to glioblastoma cells and is capable of down-regulating EGFR expression. We validated this relationship in a human cohort of 105 primary and 36 recurrent glioblastoma patients, showing a significant inverse relationship between miR-221 and EGFR. Consistently, we showed that high miR-221 and low-EGFR expression at recurrence is associated with a poorer prognosis. Lastly, we investigated the relevance of epithelial to mesenchymal transition markers after observing that migration rates were maintained in resistant cells despite low EGFR and MET. Both N-Cadherin and CD44 were found to be highly expressed in treatment-resistant cells and the down-regulation of AKT activity with wortmannin led to reduced levels of EMT markers, suggesting that AKT is a regulator of key EMT transcription factors that are specific to N-Cadherin and CD44. The thesis gains it significance by providing an explanation to the failure of RTK inhibitors in the glioblastoma clinic by suggesting that standard radio-chemotherapy down-regulates RTK activity and expression, thereby diminishing any theorised benefit of targeting RTKs. Furthermore, the thesis advocates for microRNAs to be crucial regulators of therapy resistance, potential biomarkers and targetable molecules for the clinic.