Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    The prebiotic effect of CPP-ACP sugar-free chewing gum
    Fernando, JR ; Butler, CA ; Adams, GG ; Mitchell, HL ; Dashper, SG ; Escobar, K ; Hoffmann, B ; Shen, P ; Walker, GD ; Yuan, Y ; Reynolds, C ; Reynolds, EC (ELSEVIER SCI LTD, 2019-12)
    OBJECTIVES: To determine if chewing gum containing casein phosphopeptide stabilised amorphous calcium phosphate (CPP-ACP) promoted an increase in the abundance of Streptococcus sanguinis and other species associated with dental health in supragingival plaque in a clinical study. MATERIALS AND METHODS: Nineteen participants were recruited for a three-leg cross-over, randomised, controlled clinical trial. Participants chewed a sugar-free gum with or without CPP-ACP six times daily for 20 min over two weeks. The study also involved no gum chewing (no gum) for the same two week period. Participants were randomly assigned to one of the test gums or no gum for each intervention period. Participants abstained from oral hygiene and had washout periods of two weeks between intervention periods. After each intervention period, supragingival plaque was collected and analysed for bacterial composition by sequencing the V4 variable region of the 16S rRNA gene. Data were analysed using a linear mixed model. RESULTS: The CPP-ACP gum intervention produced a significant (p < 0.01) increase in the proportions of S. sanguinis (112%), as well as the commensal species Rothia dentocariosa (127%), Corynebacterium durum (80%) and Streptococcus mitis (55%) when compared with the no gum intervention. All the species that were promoted by the CPP-ACP gum are known to possess one or both of the alkali-producing enzymes arginine deiminase and nitrate reductase. CONCLUSION: This clinical study demonstrated that chewing a sugar-free gum containing CPP-ACP promoted prebiosis by significantly increasing the proportion of S. sanguinis and other health-associated bacterial species in supragingival plaque. CLINICAL SIGNIFICANCE: Regular chewing of CPP-ACP sugar-free gum increases the proportions of health-associated commensal species in supragingival plaque to promote prebiosis and oral homeostasis.
  • Item
    Thumbnail Image
    Streptococcus mutans biofilm disruption by κ-casein glycopeptide
    Dashper, SG ; Liu, S-W ; Walsh, KA ; Adams, GG ; Stanton, DP ; Ward, BR ; Shen, P ; O'Brien-Simpson, NM ; Reynolds, EC (ELSEVIER SCI LTD, 2013-06)
    UNLABELLED: Caseinomacropeptide (CMP), the variably phosphorylated and glycosylated forms of the bovine milk protein fragment, κ-casein(106-169), is produced during cheese production and has been shown to have a range of antibacterial bioactivities. OBJECTIVES: To characterise the biofilm disruptive component of CMP and compare its activity with the known antimicrobial agents chlorhexidine and zinc ions. METHODS: Streptococcus mutans biofilms were grown in flow cells with an artificial saliva medium containing sucrose and treated with CMP and the glycosylated forms of κ-casein(106-169) (κ-casein glycopeptide, KCG). The biofilms were imaged using confocal laser scanning microscopy (CLSM) and quantified by COMSTAT software analysis. A static biofilm assay and flow cytometric analysis were used to examine the mechanism of action of chlorhexidine and a combination of KCG with the known antimicrobial agent ZnCl2 (KCG-Zn). RESULTS: CLSM analysis showed that S. mutans produced robust, structured biofilms with an average thickness of 7.37μm and a biovolume of 3.88μm(3)/μm(2) substratum after 16h of incubation in the flow cell system. A single application of 10mg/mL CMP that contained 2.4mg/mL KCG significantly reduced total biofilm biovolume and average biofilm thickness by 53% and 61%, respectively. This was statistically the same as a 2.4mg/mL KCG treatment that reduced the total biovolume and average thickness by 59% and 69%, respectively, suggesting the KCG was the biofilm disruptive component of CMP. Chlorhexidine treatment (0.1%) caused similar effects in the flow cell model. KCG-Zn caused significantly more disruption of the biofilms than either KCG or ZnCl2 treatment alone. In a static biofilm model chlorhexidine was shown to work by disrupting bacterial membrane integrity whilst KCG-Zn had no effect on membrane integrity. CONCLUSIONS: KCG and KCG-Zn may have potential as natural biofilm disruptive agents.