Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Star-Peptide Polymers are Multi-Drug-Resistant Gram-Positive Bacteria Killers
    Li, W ; Hadjigol, S ; Mazo, AR ; Holden, J ; Lenzo, J ; Shirbin, SJ ; Barlow, A ; Shabani, S ; Huang, T ; Reynolds, EC ; Qiao, GG ; O'Brien-Simpson, NM (AMER CHEMICAL SOC, 2022-06-08)
    Antibiotic resistance in bacteria, especially Gram-positive bacteria like Staphylococcus aureus, is gaining considerable momentum worldwide and unless checked will pose a global health crisis. With few new antibiotics coming on the market, there is a need for novel antimicrobial materials that target and kill multi-drug-resistant (MDR) Gram-positive pathogens like methicillin-resistant Staphylococcus aureus (MRSA). In this study, using a novel mixed-bacteria antimicrobial assay, we show that the star-peptide polymers preferentially target and kill Gram-positive pathogens including MRSA. A major effect on the activity of the star-peptide polymer was structure, with an eight-armed structure inducing the greatest bactericidal activity. The different star-peptide polymer structures were found to induce different mechanisms of bacterial death both in vitro and in vivo. These results highlight the potential utility of peptide/polymers to fabricate materials for therapeutic development against MDR Gram-positive bacterial infections.
  • Item
    Thumbnail Image
    Systematic comparison of activity and mechanism of antimicrobial peptides against nosocomial pathogens
    Lin, B ; Hung, A ; Li, R ; Barlow, A ; Singleton, W ; Matthyssen, T ; Sani, M-AD ; Hossain, MA ; Wade, J ; O'Brien-Simpson, NM ; Li, W (ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER, 2022-03-05)
    The World Health Organisation has deemed several multi-drug resistant (MDR) nosocomial bacterial pathogens to be of significant threat to human health. A stark increase in morbidity, mortality and the burden to healthcare systems around the world can be attributed to the development of resistance in these bacteria. Accordingly, alternative antimicrobial agents have been sought as an attractive means to combat MDR pathogens, with one such example being antimicrobial peptides (AMPs). Given the reported activity of AMPs, including Pardaxin, MSI-78, dermaseptin-PC (DMPC) and Cecropin B, it is important to understand their activities and modes of action against bacteria for further AMP design. In this study, we compared these AMPs against a panel of nosocomial bacterial pathogens, followed by detailed mechanistic studies. It was found that Pardaxin (1-22) and MSI-78 (4-20) displayed the most pronounced antimicrobial activity against the tested bacteria. The mechanistic studies by membrane permeability and molecular dynamics simulation further confirmed the strong membrane interaction and structure of Pardaxin (1-22) and MSI-78 (4-20), which contributed to their potent activity. This study demonstrated a structure and activity guidance for further design of Pardaxin (1-22) and MSI-78 (4-20) as therapeutics against MDR pathogens. The different effects of DMPC (1-19) and Cecropin B (1-21) on membrane integrity and phospholipid membrane interactions provided critical information for the rational design of next-generation analogues with specificity against either Gram-negative or Gram-positive bacteria.
  • Item
    No Preview Available
    The effect of tailing lipidation on the bioactivity of antimicrobial peptides and their aggregation tendency Special Issue: Emerging Investigators
    Lin, B ; Hung, A ; Singleton, W ; Darmawan, KK ; Moses, R ; Yao, B ; Wu, H ; Barlow, A ; Marc-Antoine, S ; Sloan, AJ ; Hossain, MA ; Wade, JD ; Hong, Y ; O'Brien-Simpson, NM ; Li, W (WILEY, 2023-08)
    Abstract Antimicrobial peptides (AMPs) are potentially powerful alternatives to conventional antibiotics in combating multidrug resistance, given their broad spectrum of activity. They mainly interact with cell membranes through surface electrostatic potentials and the formation of secondary structures, resulting in permeability and destruction of target microorganism membranes. Our earlier work showed that two leading AMPs, MSI‐78 (4–20) and pardaxin (1–22), had potent antimicrobial activity against a range of bacteria. It is known that the attachment of moderate‐length lipid carbon chains to cationic peptides can further improve the functionality of these peptides through enhanced interactions with the membrane lipid bilayer, inducing membrane curvature, destabilization, and potential leakage. Thus, in this work, we aimed to investigate the antimicrobial activity, oligomerization propensity, and lipid‐membrane binding interactions of a range of N‐terminal lipidated analogs of MSI‐78 (4–20) and pardaxin (1–22). Molecular modeling results suggest that aggregation of the N‐lipidated AMPs may impart greater structural stability to the peptides in solution and a greater depth of lipid bilayer insertion for the N‐lipidated AMPs over the parental peptide. Our experimental and computational findings provide insights into how N‐terminal lipidation of AMPs may alter their conformations, with subsequent effects on their functional properties in regard to their self‐aggregation behavior, membrane interactions, and antimicrobial activity.
  • Item
    Thumbnail Image
    Enhancing proline-rich antimicrobial peptide action by homodimerization: influence of bifunctional linker
    Li, W ; Lin, F ; Hung, A ; Barlow, A ; Sani, M-A ; Paolini, R ; Singleton, W ; Holden, J ; Hossain, MA ; Separovic, F ; O'Brien-Simpson, NM ; Wade, JD (ROYAL SOC CHEMISTRY, 2022-02-23)
    Antimicrobial peptides (AMPs) are host defense peptides, and unlike conventional antibiotics, they possess potent broad spectrum activities and, induce little or no antimicrobial resistance. They are attractive lead molecules for rational development to improve their therapeutic index. Our current studies examined dimerization of the de novo designed proline-rich AMP (PrAMP), Chex1-Arg20 hydrazide, via C-terminal thiol addition to a series of bifunctional benzene or phenyl tethers to determine the effect of orientation of the peptides and linker length on antimicrobial activity. Antibacterial assays confirmed that dimerization per se significantly enhances Chex1-Arg20 hydrazide action. Greatest advantage was conferred using perfluoroaromatic linkers (tetrafluorobenzene and octofluorobiphenyl) with the resulting dimeric peptides 6 and 7 exhibiting potent action against Gram-negative bacteria, especially the World Health Organization's critical priority-listed multidrug-resistant (MDR)/extensively drug-resistant (XDR) Acinetobacter baumannii as well as preformed biofilms. Mode of action studies indicated these lead PrAMPs can interact with both outer and inner bacterial membranes to affect the membrane potential and stress response. Additionally, 6 and 7 possess potent immunomodulatory activity and neutralise inflammation via nitric oxide production in macrophages. Molecular dynamics simulations of adsorption and permeation mechanisms of the PrAMP on a mixed lipid membrane bilayer showed that a rigid, planar tethered dimer orientation, together with the presence of fluorine atoms that provide increased bacterial membrane interaction, is critical for enhanced dimer activity. These findings highlight the advantages of use of such bifunctional tethers to produce first-in-class, potent PrAMP dimers against MDR/XDR bacterial infections.