Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Breastmilk influences development and composition of the oral microbiome
    Butler, CA ; Adams, GG ; Blum, J ; Byrne, SJ ; Carpenter, L ; Gussy, MG ; Calache, H ; Catmull, D ; Reynolds, EC ; Dashper, SG (TAYLOR & FRANCIS LTD, 2022-12-31)
    BACKGROUND: Human microbiomes assemble in an ordered, reproducible manner yet there is limited information about early colonisation and development of bacterial communities that constitute the oral microbiome. AIM: The aim of this study was to determine the effect of exposure to breastmilk on assembly of the infant oral microbiome during the first 20 months of life. METHODS: The oral microbiomes of 39 infants, 13 who were never breastfed and 26 who were breastfed for more than 10 months, from the longitudinal VicGeneration birth cohort study, were determined at four ages. In total, 519 bacterial taxa were identified and quantified in saliva by sequencing the V4 region of the bacterial 16S rRNA genes. RESULTS: There were significant differences in the development of the oral microbiomes of never breastfed and breastfed infants. Bacterial diversity was significantly higher in never breastfed infants at 2 months, due largely to an increased abundance of Veillonella and species from the Bacteroidetes phylum compared with breastfed infants. CONCLUSION: These differences likely reflect breastmilk playing a prebiotic role in selection of early-colonising, health-associated oral bacteria, such as the Streptococcus mitis group. The microbiomes of both groups became more heterogenous following the introduction of solid foods.
  • Item
    Thumbnail Image
    Protein Substrates of a Novel Secretion System Are Numerous in the Bacteroidetes Phylum and Have in Common a Cleavable C-Terminal Secretion Signal, Extensive Post-Translational Modification, and Cell-Surface Attachment
    Veith, PD ; Muhammad, NAN ; Dashper, SG ; Likic, VA ; Gorasia, DG ; Chen, D ; Byrne, SJ ; Catmull, DV ; Reynolds, EC (AMER CHEMICAL SOC, 2013-10)
    The secretion of certain proteins in Porphyromonas gingivalis is dependent on a C-terminal domain (CTD). After secretion, the CTD is cleaved prior to extensive modification of the mature protein, probably with lipopolysaccharide, therefore enabling attachment to the cell surface. In this study, bioinformatic analyses of the CTD demonstrated the presence of three conserved sequence motifs. These motifs were used to construct Hidden Markov Models (HMMs) that predicted 663 CTD-containing proteins in 21 fully sequenced species of the Bacteroidetes phylum, while no CTD-containing proteins were predicted in species outside this phylum. Further HMM searching of Cytophaga hutchinsonii led to a total of 171 predicted CTD proteins in that organism alone. Proteomic analyses of membrane fractions and culture fluid derived from P. gingivalis and four other species containing predicted CTDs (Parabacteroides distasonis, Prevotella intermedia, Tannerella forsythia, and C. hutchinsonii) demonstrated that membrane localization, extensive post-translational modification, and CTD-cleavage were conserved features of the secretion system. The CTD cleavage site of 10 different proteins from 3 different species was determined and found to be similar to the cleavage site previously determined in P. gingivalis, suggesting that homologues of the C-terminal signal peptidase (PG0026) are responsible for the cleavage in these species.
  • Item
    Thumbnail Image
    Protein substrates of a novel secretion system are numerous in the bacteroidetes phylum and have in common a cleavable C-Terminal secretion signal, extensive post-translational modification, and cell-surface attachment
    Veith, Paul D. ; Nor Muhammad, Nor A. ; Dashper, Stuart G. ; Likic, Vladimir A. ; Gorasia, Dhana G. ; Chen, Dina ; Byrne, Samantha J. ; V.Catmull, Deanne ; Reynolds, Eric C. (American Chemical Society (ACS), 2013)
    The secretion of certain proteins in Porphyromonas gingivalis is dependent on a C-terminal domain (CTD). After secretion, the CTD is cleaved prior to extensive modification of the mature protein, probably with lipopolysaccharide, therefore enabling attachment to the cell surface. In this study, bioinformatic analyses of the CTD demonstrated the presence of three conserved sequence motifs. These motifs were used to construct Hidden Markov Models (HMMs) that predicted 663 CTD-containing proteins in 21 fully sequenced species of the Bacteroidetes phylum, while no CTD-containing proteins were predicted in species outside this phylum. Further HMM searching of Cytophaga hutchinsonii led to a total of 171 predicted CTD proteins in that organism alone. Proteomic analyses of membrane fractions and culture fluid derived from P. gingivalis and four other species containing predicted CTDs (Parabacteroides distasonis, Prevotella intermedia, Tannerella forsythia, and C. hutchinsonii) demonstrated that membrane localization, extensive post-translational modification, and CTD-cleavage were conserved features of the secretion system. The CTD cleavage site of 10 different proteins from 3 different species was determined and found to be similar to the cleavage site previously determined in P. gingivalis, suggesting that homologues of the C-terminal signal peptidase (PG0026) are responsible for the cleavage in these species.