Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Breastmilk influences development and composition of the oral microbiome
    Butler, CA ; Adams, GG ; Blum, J ; Byrne, SJ ; Carpenter, L ; Gussy, MG ; Calache, H ; Catmull, D ; Reynolds, EC ; Dashper, SG (TAYLOR & FRANCIS LTD, 2022-12-31)
    BACKGROUND: Human microbiomes assemble in an ordered, reproducible manner yet there is limited information about early colonisation and development of bacterial communities that constitute the oral microbiome. AIM: The aim of this study was to determine the effect of exposure to breastmilk on assembly of the infant oral microbiome during the first 20 months of life. METHODS: The oral microbiomes of 39 infants, 13 who were never breastfed and 26 who were breastfed for more than 10 months, from the longitudinal VicGeneration birth cohort study, were determined at four ages. In total, 519 bacterial taxa were identified and quantified in saliva by sequencing the V4 region of the bacterial 16S rRNA genes. RESULTS: There were significant differences in the development of the oral microbiomes of never breastfed and breastfed infants. Bacterial diversity was significantly higher in never breastfed infants at 2 months, due largely to an increased abundance of Veillonella and species from the Bacteroidetes phylum compared with breastfed infants. CONCLUSION: These differences likely reflect breastmilk playing a prebiotic role in selection of early-colonising, health-associated oral bacteria, such as the Streptococcus mitis group. The microbiomes of both groups became more heterogenous following the introduction of solid foods.
  • Item
    Thumbnail Image
    Temporal development of the oral microbiome and prediction of early childhood caries
    Dashper, SG ; Mitchell, HL ; Le Cao, K-A ; Carpenter, L ; Gussy, MG ; Calache, H ; Gladman, SL ; Bulach, DM ; Hoffmann, B ; Catmull, D ; Pruilh, S ; Johnson, S ; Gibbs, L ; Amezdroz, E ; Bhatnagar, U ; Seemann, T ; Mnatzaganian, G ; Manton, DJ ; Reynolds, EC (NATURE PORTFOLIO, 2019-12-24)
    Human microbiomes are predicted to assemble in a reproducible and ordered manner yet there is limited knowledge on the development of the complex bacterial communities that constitute the oral microbiome. The oral microbiome plays major roles in many oral diseases including early childhood caries (ECC), which afflicts up to 70% of children in some countries. Saliva contains oral bacteria that are indicative of the whole oral microbiome and may have the ability to reflect the dysbiosis in supragingival plaque communities that initiates the clinical manifestations of ECC. The aim of this study was to determine the assembly of the oral microbiome during the first four years of life and compare it with the clinical development of ECC. The oral microbiomes of 134 children enrolled in a birth cohort study were determined at six ages between two months and four years-of-age and their mother's oral microbiome was determined at a single time point. We identified and quantified 356 operational taxonomic units (OTUs) of bacteria in saliva by sequencing the V4 region of the bacterial 16S RNA genes. Bacterial alpha diversity increased from a mean of 31 OTUs in the saliva of infants at 1.9 months-of-age to 84 OTUs at 39 months-of-age. The oral microbiome showed a distinct shift in composition as the children matured. The microbiome data were compared with the clinical development of ECC in the cohort at 39, 48, and 60 months-of-age as determined by ICDAS-II assessment. Streptococcus mutans was the most discriminatory oral bacterial species between health and current disease, with an increased abundance in disease. Overall our study demonstrates an ordered temporal development of the oral microbiome, describes a limited core oral microbiome and indicates that saliva testing of infants may help predict ECC risk.
  • Item
    Thumbnail Image
    Oxantel Disrupts Polymicrobial Biofilm Development of Periodontal Pathogens
    Dashper, S ; O'Brien-Simpson, N ; Liu, SW ; Paolini, R ; Mitchell, H ; Walsh, K ; D'Cruze, T ; Hoffmann, B ; Catmull, D ; Zhu, Y ; Reynolds, E (AMER SOC MICROBIOLOGY, 2014-01)
    Bacterial pathogens commonly associated with chronic periodontitis are the spirochete Treponema denticola and the Gram-negative, proteolytic species Porphyromonas gingivalis and Tannerella forsythia. These species rely on complex anaerobic respiration of amino acids, and the anthelmintic drug oxantel has been shown to inhibit fumarate reductase (Frd) activity in some pathogenic bacteria and inhibit P. gingivalis homotypic biofilm formation. Here, we demonstrate that oxantel inhibited P. gingivalis Frd activity with a 50% inhibitory concentration (IC50) of 2.2 μM and planktonic growth of T. forsythia with a MIC of 295 μM, but it had no effect on the growth of T. denticola. Oxantel treatment caused the downregulation of six P. gingivalis gene products and the upregulation of 22 gene products. All of these genes are part of a regulon controlled by heme availability. There was no large-scale change in the expression of genes encoding metabolic enzymes, indicating that P. gingivalis may be unable to overcome Frd inhibition. Oxantel disrupted the development of polymicrobial biofilms composed of P. gingivalis, T. forsythia, and T. denticola in a concentration-dependent manner. In these biofilms, all three species were inhibited to a similar degree, demonstrating the synergistic nature of biofilm formation by these species and the dependence of T. denticola on the other two species. In a murine alveolar bone loss model of periodontitis oxantel addition to the drinking water of P. gingivalis-infected mice reduced bone loss to the same level as the uninfected control.
  • Item
    Thumbnail Image
    Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms
    Dashper, SG ; Catmull, DV ; Liu, S-W ; Myroforidis, H ; Zalizniak, I ; Palamara, JEA ; Huq, NL ; Reynolds, EC ; Omri, A (PUBLIC LIBRARY SCIENCE, 2016-09-02)
    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.
  • Item
    Thumbnail Image
    Protein Substrates of a Novel Secretion System Are Numerous in the Bacteroidetes Phylum and Have in Common a Cleavable C-Terminal Secretion Signal, Extensive Post-Translational Modification, and Cell-Surface Attachment
    Veith, PD ; Muhammad, NAN ; Dashper, SG ; Likic, VA ; Gorasia, DG ; Chen, D ; Byrne, SJ ; Catmull, DV ; Reynolds, EC (AMER CHEMICAL SOC, 2013-10)
    The secretion of certain proteins in Porphyromonas gingivalis is dependent on a C-terminal domain (CTD). After secretion, the CTD is cleaved prior to extensive modification of the mature protein, probably with lipopolysaccharide, therefore enabling attachment to the cell surface. In this study, bioinformatic analyses of the CTD demonstrated the presence of three conserved sequence motifs. These motifs were used to construct Hidden Markov Models (HMMs) that predicted 663 CTD-containing proteins in 21 fully sequenced species of the Bacteroidetes phylum, while no CTD-containing proteins were predicted in species outside this phylum. Further HMM searching of Cytophaga hutchinsonii led to a total of 171 predicted CTD proteins in that organism alone. Proteomic analyses of membrane fractions and culture fluid derived from P. gingivalis and four other species containing predicted CTDs (Parabacteroides distasonis, Prevotella intermedia, Tannerella forsythia, and C. hutchinsonii) demonstrated that membrane localization, extensive post-translational modification, and CTD-cleavage were conserved features of the secretion system. The CTD cleavage site of 10 different proteins from 3 different species was determined and found to be similar to the cleavage site previously determined in P. gingivalis, suggesting that homologues of the C-terminal signal peptidase (PG0026) are responsible for the cleavage in these species.
  • Item
    Thumbnail Image
    Antibiotic susceptibility of Aggregatibacter actinomycetemcomitans JP2 in a biofilm
    Oettinger-Barak, O ; Dashper, SG ; Catmull, DV ; Adams, GG ; Sela, MN ; Machtei, EE ; Reynolds, EC (CO-ACTION PUBLISHING, 2013)
    BACKGROUND: Localized aggressive periodontitis (LAgP) is an inflammatory disease associated with specific bacteria, particularly Aggregatibacter actinomycetemcomitans, which can result in early tooth loss. The bacteria grow as a biofilm known as subgingival plaque. Treatment includes mechanical debridement of the biofilm, often associated with empirical antibiotic treatment. OBJECTIVE: The aims of this study were to test in vitro the sensitivity of A. actinomycetemcomitans JP2 during planktonic and biofilm growth to doxycycline and to the combination of metronidazole and amoxicillin, which are two antibiotic protocols commonly used in clinical practice. DESIGN: Two in vitro biofilm models were used to test the effects of the antibiotics: a static 96-well plate assay was used to investigate the effect of these antibiotics on biofilm formation whilst a flow chamber model was used to examine the effect on established biofilms. RESULTS: Of the antibiotics tested in this model system, doxycycline was most efficacious with a minimal inhibitory concentration (MIC) against planktonic cells of 0.21 mg/L and minimal biofilm inhibitory concentration (MBIC) of 2.10 mg/L. The most commonly prescribed antibiotic regimen, amoxicillin + metronidazole, was much less effective against both planktonic and biofilm cells with an MIC and MBIC of 12.0 mg/L and 20.2 mg/L, respectively. A single treatment of the clinically achievable concentration of 10 mg/L doxycycline to sparse A. actinomycetemcomitans biofilms in the flow chamber model resulted in significant decreases in biofilm thickness, biovolume, and cell viability. Dense A. actinomycetemcomitans biofilms were significantly more resistant to doxycycline treatment. Low concentrations of antibiotics enhanced biofilm formation. CONCLUSION: A. actinomycetemcomitans JP2 homotypic biofilms were more susceptible in vitro to doxycycline than amoxicillin + metronidazole.
  • Item
    Thumbnail Image
    The Porphyromonas gingivalis Ferric Uptake Regulator Orthologue Binds Hemin and Regulates Hemin-Responsive Biofilm Development
    Butler, CA ; Dashper, SG ; Zhang, L ; Seers, CA ; Mitchell, HL ; Catmull, DV ; Glew, MD ; Heath, JE ; Tan, Y ; Khan, HSG ; Reynolds, EC ; Lei, B (PUBLIC LIBRARY SCIENCE, 2014-11-06)
    Porphyromonas gingivalis is a Gram-negative pathogen associated with the biofilm-mediated disease chronic periodontitis. P. gingivalis biofilm formation is dependent on environmental heme for which P. gingivalis has an obligate requirement as it is unable to synthesize protoporphyrin IX de novo, hence P. gingivalis transports iron and heme liberated from the human host. Homeostasis of a variety of transition metal ions is often mediated in Gram-negative bacteria at the transcriptional level by members of the Ferric Uptake Regulator (Fur) superfamily. P. gingivalis has a single predicted Fur superfamily orthologue which we have designated Har (heme associated regulator). Recombinant Har formed dimers in the presence of Zn2+ and bound one hemin molecule per monomer with high affinity (Kd of 0.23 µM). The binding of hemin resulted in conformational changes of Zn(II)Har and residue 97Cys was involved in hemin binding as part of a predicted -97C-98P-99L- hemin binding motif. The expression of 35 genes was down-regulated and 9 up-regulated in a Har mutant (ECR455) relative to wild-type. Twenty six of the down-regulated genes were previously found to be up-regulated in P. gingivalis grown as a biofilm and 11 were up-regulated under hemin limitation. A truncated Zn(II)Har bound the promoter region of dnaA (PGN_0001), one of the up-regulated genes in the ECR455 mutant. This binding decreased as hemin concentration increased which was consistent with gene expression being regulated by hemin availability. ECR455 formed significantly less biofilm than the wild-type and unlike wild-type biofilm formation was independent of hemin availability. P. gingivalis possesses a hemin-binding Fur orthologue that regulates hemin-dependent biofilm formation.
  • Item
    Thumbnail Image
    Protein substrates of a novel secretion system are numerous in the bacteroidetes phylum and have in common a cleavable C-Terminal secretion signal, extensive post-translational modification, and cell-surface attachment
    Veith, Paul D. ; Nor Muhammad, Nor A. ; Dashper, Stuart G. ; Likic, Vladimir A. ; Gorasia, Dhana G. ; Chen, Dina ; Byrne, Samantha J. ; V.Catmull, Deanne ; Reynolds, Eric C. (American Chemical Society (ACS), 2013)
    The secretion of certain proteins in Porphyromonas gingivalis is dependent on a C-terminal domain (CTD). After secretion, the CTD is cleaved prior to extensive modification of the mature protein, probably with lipopolysaccharide, therefore enabling attachment to the cell surface. In this study, bioinformatic analyses of the CTD demonstrated the presence of three conserved sequence motifs. These motifs were used to construct Hidden Markov Models (HMMs) that predicted 663 CTD-containing proteins in 21 fully sequenced species of the Bacteroidetes phylum, while no CTD-containing proteins were predicted in species outside this phylum. Further HMM searching of Cytophaga hutchinsonii led to a total of 171 predicted CTD proteins in that organism alone. Proteomic analyses of membrane fractions and culture fluid derived from P. gingivalis and four other species containing predicted CTDs (Parabacteroides distasonis, Prevotella intermedia, Tannerella forsythia, and C. hutchinsonii) demonstrated that membrane localization, extensive post-translational modification, and CTD-cleavage were conserved features of the secretion system. The CTD cleavage site of 10 different proteins from 3 different species was determined and found to be similar to the cleavage site previously determined in P. gingivalis, suggesting that homologues of the C-terminal signal peptidase (PG0026) are responsible for the cleavage in these species.
  • Item
    Thumbnail Image
    Differential Proteomic Analysis of a Polymicrobial Biofilm
    Zainal-Abidin, Z ; Veith, PD ; Dashper, SG ; Zhu, Y ; Catmull, DV ; Chen, Y-Y ; Heryanto, DC ; Chen, D ; Pyke, JS ; Tan, K ; Mitchell, HL ; Reynolds, EC (AMER CHEMICAL SOC, 2012-09)
    Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia exist in a polymicrobial biofilm associated with chronic periodontitis. The aim of this study was to culture these three species as a polymicrobial biofilm and to determine proteins important for bacterial interactions. In a flow cell all three species attached and grew as a biofilm; however, after 90 h of culture P. gingivalis and T. denticola were closely associated and dominated the polymicrobial biofilm. For comparison, planktonic cultures of P. gingivalis and T. denticola were grown separately in continuous culture. Whole cell lysates were subjected to SDS-PAGE, followed by in-gel proteolytic H₂¹⁶O/H₂¹⁸O labeling. From two replicates, 135 and 174 P. gingivalis proteins and 134 and 194 T. denticola proteins were quantified by LC-MALDI TOF/TOF MS. The results suggest a change of strategy in iron acquisition by P. gingivalis due to large increases in the abundance of HusA and HusB in the polymicrobial biofilm while HmuY and other iron/haem transport systems decreased. Significant changes in the abundance of peptidases and enzymes involved in glutamate and glycine catabolism suggest syntrophy. These data indicate an intimate association between P. gingivalis and T. denticola in a biofilm that may play a role in disease pathogenesis.
  • Item
    Thumbnail Image
    Divalent metal cations increase the activity of the antimicrobial peptide kappacin
    Dashper, SG ; O'Brien-Simpson, NM ; Cross, KJ ; Paolini, RA ; Hoffmann, B ; Catmull, DV ; Malkoski, M ; Reynolds, EC (AMER SOC MICROBIOLOGY, 2005-06)
    Kappacin, nonglycosylated kappa-casein(106-169), is a novel antimicrobial peptide produced from kappa-casein found in bovine milk. There are two major genetic forms of kappacin, A and B, and using synthetic peptides corresponding to the active region, kappa-casein(138-158), of these forms, we have shown that the Asp148 to Ala148 substitution is responsible for the lesser antibacterial activity of kappa-casein-B(106-169). Kappacin was shown to have membranolytic action at concentrations above 30 microM at acidic pH when tested against artificial liposomes. There was little membranolytic activity at neutral pH, which is consistent with the lack of antibacterial activity of kappacin against Streptococcus mutans at this pH. Kappacin specifically bound two zinc or calcium ions per mol, and this binding enhanced antibacterial activity at neutral pH. Nuclear magnetic resonance analysis indicated that a kappa-casein-A(138-158) synthetic peptide undergoes a conformational change in the presence of the membrane solvent trifluoroethanol and excess divalent metal ions. This change in conformation is presumably responsible for the increase in antibacterial activity of kappacin detected in the presence of excess zinc or calcium ions at neutral pH. When tested against the oral bacterial pathogen S. mutans cultured as a biofilm in a constant-depth film fermentor, a preparation of 10 g/liter kappacin and 20 mM ZnCl2 reduced bacterial viability by 3 log10 and suppressed recovery of viability. In contrast 20 mM ZnCl2 alone reduced bacterial viability by approximately 1 log10 followed by rapid recovery. In conclusion, kappacin has a membranolytic, antibacterial effect that is enhanced by the presence of divalent cations.