Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Oral keratinocytes synthesize CTACK: A new insight into the pathophysiology of the oral mucosa
    Marshall, A ; Celentano, A ; Cirillo, N ; McCullough, M ; Porter, S (WILEY, 2018-02)
    The skin-associated chemokine CTACK plays a key role in many inflammatory conditions and could be instrumental in the pathophysiology of tissue-specific immunological diseases such as oral lichen planus (OLP). In this study, we investigated, by RT-PCR, ELISA, chemotaxis assays, and fluorescence-activated cell sorting (FACS), the production of CTACK in oral keratinocytes, its expression in tissues from normal and OLP patients, and its role in T-cell recruitment.CTACK was produced by the oral epithelium, and it affects chemotaxis of memory CLA+ cells to the oral epithelium. CTACK mRNA was expressed constitutively in primary oral epithelium and was increased during pro-inflammatory IFN-γ treatment. We found a constitutive production of CTACK at a protein level in oral primary cells that increased after IFN-γ treatment. Moreover, we confirmed that CTACK attracts memory T cells and those T cells that express CLA above the level of basal migration.
  • Item
    Thumbnail Image
    Antimicrobial activity and regulation of CXCL9 and CXCL10 in oral keratinocytes
    Marshall, A ; Celentano, A ; Cirillo, N ; Mignogna, MD ; McCullough, M ; Porter, S (WILEY, 2016-10)
    Chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10 are dysregulated in oral inflammatory conditions, and it is not known if these chemokines target microorganisms that form oral biofilm. The aim of this study was to investigate the antimicrobial activity of CXCL9 and CXCL10 on oral microflora and their expression profiles in oral keratinocytes following exposure to inflammatory and infectious stimuli. Streptococcus sanguinis was used as a model and Escherichia coli as a positive control. The antimicrobial effect of CXCL9/CXCL10 was tested using a radial diffusion assay. mRNA transcripts were isolated from lipopolysaccharide (LPS)-treated and untreated (control) oral keratinocyte cell lines at 2-, 4-, 6-, and 8-h time-points of culture. The CXCL9/10 expression profile in the presence or absence of interferon-γ (IFN-γ) was assessed using semiquantitative PCR. Although both chemokines demonstrated antimicrobial activity, CXCL9 was the most effective chemokine against both S. sanguinis and E coli. mRNA for CXCL10 was expressed in control cells and its production was enhanced at all time-points following stimulation with LPS. Conversely, CXCL9 mRNA was not expressed in control or LPS-stimulated cells. Finally, stimulation with IFN-γ enhanced basal expression of both CXCL9 and CXCL10 in oral keratinocytes. Chemokines derived from oral epithelium, particularly CXCL9, demonstrate antimicrobial properties. Bacterial and inflammatory-stimulated up-regulation of CXCL9/10 could represent a key element in oral bacterial colonization homeostasis and host-defense mechanisms.
  • Item
    Thumbnail Image
    The Non-Conventional Effects of Glucocorticoids in Cancer
    Azher, S ; Azami, O ; Amato, C ; McCullough, M ; Celentano, A ; Cirillo, N (WILEY, 2016-11)
  • Item
    Thumbnail Image
    The protective effects of Kava (Piper Methysticum) constituents in cancers: A systematic review
    Celentano, A ; Tran, A ; Testa, C ; Thayanantha, K ; Tan-Orders, W ; Tan, S ; Syamal, M ; McCullough, MJ ; Yap, T (WILEY, 2019-08)
    BACKGROUND: Kava is a beverage made from the ground roots of the plant Piper Methysticum and has long-held a significant place within Pacific island communities. Active compounds were extracted from kava, and secondary metabolites include kavalactones, chalcones, cinnamic acid derivatives and flavanones. It is thought that components of kava may exert an antiproliferative effect through cell cycle arrest and promotion of apoptosis. METHODS: We conducted a systematic review to summarize available evidence of the anticancer effects of kava components and investigate their potential use for oral squamous cell carcinoma (OSCC) treatment. Eligible studies were identified through a comprehensive search of OVID EMBASE, OVID MEDLINE and Web of Science, as at April 2018. RESULTS: Of 39 papers that met the inclusion criteria, 32 included in vitro models and 13 included animal studies. A total of 26 different cancers were assessed with 32 studies solely assessing epithelial cancers, 6 mesenchymal cancers and 1 study including both. There was only one report assessing an OSCC cell line. Antiproliferative properties were demonstrated in 32 out of 39 papers. The most researched constituent of kava was flavokavain B followed by flavokavain A. Both were associated with increased expression of pro-apoptotic proteins and decreased expression of anti-apoptotic proteins. Further, they were associated with a dose-dependent reduction of angiogenesis. CONCLUSION: There was heterogeneity of study models and methods of investigation across the studies identified. Components of kava appear to present an area of interest with chemotherapeutic potential in cancer prevention and treatment, particularly for epithelial neoplasms. To date, there is a paucity of literature of the utility of kava components in the prevention and treatment of oral squamous cell carcinoma.
  • Item
    Thumbnail Image
    Characterisation of the cancer-associated glucocorticoid system: key role of 11β-hydroxysteroid dehydrogenase type 2
    Cirillo, N ; Morgan, DJ ; Pedicillo, MC ; Celentano, A ; Lo Muzio, L ; McCullough, MJ ; Prime, SS (NATURE PUBLISHING GROUP, 2017-09-26)
    BACKGROUND: Recent studies have shown that production of cortisol not only takes place in several non-adrenal peripheral tissues such as epithelial cells but, also, the local inter-conversion between cortisone and cortisol is regulated by the 11β-hydroxysteroid dehydrogenases (11β-HSDs). However, little is known about the activity of this non-adrenal glucocorticoid system in cancers. METHODS: The presence of a functioning glucocorticoid system was assessed in human skin squamous cell carcinoma (SCC) and melanoma and further, in 16 epithelial cell lines from 8 different tissue types using ELISA, western blotting and immunofluorescence. 11β-HSD2 was inhibited both pharmacologically and by siRNA technology. Naïve CD8+ T cells were used to test the paracrine effects of cancer-derived cortisol on the immune system in vitro. Functional assays included cell-cell adhesion and cohesion in two- and three-dimensional models. Immunohistochemical data of 11β-HSD expression were generated using tissue microarrays of 40 cases of human SCCs as well as a database featuring 315 cancer cases from 15 different tissues. RESULTS: We show that cortisol production is a common feature of malignant cells and has paracrine functions. Cortisol production correlated with the magnitude of glucocorticoid receptor (GR)-dependent inhibition of tumour-specific CD8+ T cells in vitro. 11β-HSDs were detectable in human skin SCCs and melanoma. Analyses of publicly available protein expression data of 11β-HSDs demonstrated that 11β-HSD1 and -HSD2 were dysregulated in the majority (73%) of malignancies. Pharmacological manipulation of 11β-HSD2 activity by 18β-glycyrrhetinic acid (GA) and silencing by specific siRNAs modulated the bioavailability of cortisol. Cortisol also acted in an autocrine manner and promoted cell invasion in vitro and cell-cell adhesion and cohesion in two- and three-dimensional models. Immunohistochemical analyses using tissue microarrays showed that expression of 11β-HSD2 was significantly reduced in human SCCs of the skin. CONCLUSIONS: The results demonstrate evidence of a cancer-associated glucocorticoid system and show for the first time, the functional significance of cancer-derived cortisol in tumour progression.
  • Item
    Thumbnail Image
    Pathophysiology of the Desmo-Adhesome
    Celentano, A ; Mignogna, MD ; McCullough, M ; Cirillo, N (WILEY, 2017-03)
    Advances in our understanding of desmosomal diseases have provided a clear demonstration of the key role played by desmosomes in tissue and organ physiology, highlighting the importance of their dynamic and finely regulated structure. In this context, non‐desmosomal regulatory molecules have acquired increasing relevance in the study of this organelle resulting in extending the desmosomal interactome, named the “desmo‐adhesome.” Spatiotemporal changes in the expression and regulation of the desmo‐adhesome underlie a number of genetic, infectious, autoimmune, and malignant conditions. The aim of the present article was to examine the structural and functional relationship of the desmosome, by providing a comprehensive, yet focused overview of the constituents targeted in human disease. The inclusion of the novel regulatory network in the desmo‐adhesome pathophysiology opens new avenues to a deeper understanding of desmosomal diseases, potentially unveiling pathogenic mechanisms waiting to be explored. J. Cell. Physiol. 232: 496–505, 2017. © 2016 Wiley Periodicals, Inc.
  • Item
    Thumbnail Image
    Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease
    Marshall, A ; Celentano, A ; Cirillo, N ; McCullough, M ; Porter, S ; Proost, P (PUBLIC LIBRARY SCIENCE, 2017-03-02)
    The IFN-γ-inducible chemokines CXCL9, CXCL10, and CXCL11 play a key role in many inflammatory conditions, particularly those mediated by T cells. Therefore, the production of these chemokines in peripheral tissues could be instrumental in the pathophysiology of tissue-specific immunological diseases such as oral lichen planus (OLP). In the present study, we assessed the production of keratinocyte-derived CXCL9/10/11 under basal and inflammatory conditions and investigated whether these chemokines were involved in the pathogenesis of OLP. We used semi-quantitative PCR, ELISA, chemotaxis assays, and fluorescence-activated cell sorting (FACS) to assess the expression and functional role of CXCL9/10/11 in oral keratinocytes (three strains of normal human oral keratinocytes (NHOK), and the H357 oral cancer cell line) in the presence or absence of IFN-γ. CXCL9/10/11 were also assessed in tissues from normal patients and those with oral lichen planus (OLP). The time course study in oral keratinocytes treated with IFN-γ showed that expression of CXCL9/10/11 chemokines was significantly enhanced by IFN-γ in a time-dependent manner. In particular, CXCL10, a prominent chemokine that was overexpressed by IFN-γ-stimulated NHOK, was able to effectively recruit CD4 lymphocytes, mainly CD4+CD45RA- cells. Significantly higher levels of CXCL9/10/11 were found in tissues from patients with OLP compared to normal oral mucosa. Taken together, the results demonstrate that normal oral keratinocytes produce chemotactic molecules that mediate T cell recruitment. This study furthers understanding of chemokine production in oral keratinocytes and their role in the pathophysiology of oral mucosa, with particular relevance to OLP.