Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Streptococcus mutans biofilm disruption by κ-casein glycopeptide
    Dashper, SG ; Liu, S-W ; Walsh, KA ; Adams, GG ; Stanton, DP ; Ward, BR ; Shen, P ; O'Brien-Simpson, NM ; Reynolds, EC (ELSEVIER SCI LTD, 2013-06)
    UNLABELLED: Caseinomacropeptide (CMP), the variably phosphorylated and glycosylated forms of the bovine milk protein fragment, κ-casein(106-169), is produced during cheese production and has been shown to have a range of antibacterial bioactivities. OBJECTIVES: To characterise the biofilm disruptive component of CMP and compare its activity with the known antimicrobial agents chlorhexidine and zinc ions. METHODS: Streptococcus mutans biofilms were grown in flow cells with an artificial saliva medium containing sucrose and treated with CMP and the glycosylated forms of κ-casein(106-169) (κ-casein glycopeptide, KCG). The biofilms were imaged using confocal laser scanning microscopy (CLSM) and quantified by COMSTAT software analysis. A static biofilm assay and flow cytometric analysis were used to examine the mechanism of action of chlorhexidine and a combination of KCG with the known antimicrobial agent ZnCl2 (KCG-Zn). RESULTS: CLSM analysis showed that S. mutans produced robust, structured biofilms with an average thickness of 7.37μm and a biovolume of 3.88μm(3)/μm(2) substratum after 16h of incubation in the flow cell system. A single application of 10mg/mL CMP that contained 2.4mg/mL KCG significantly reduced total biofilm biovolume and average biofilm thickness by 53% and 61%, respectively. This was statistically the same as a 2.4mg/mL KCG treatment that reduced the total biovolume and average thickness by 59% and 69%, respectively, suggesting the KCG was the biofilm disruptive component of CMP. Chlorhexidine treatment (0.1%) caused similar effects in the flow cell model. KCG-Zn caused significantly more disruption of the biofilms than either KCG or ZnCl2 treatment alone. In a static biofilm model chlorhexidine was shown to work by disrupting bacterial membrane integrity whilst KCG-Zn had no effect on membrane integrity. CONCLUSIONS: KCG and KCG-Zn may have potential as natural biofilm disruptive agents.