Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    The Potential of Calcium Phosphate Nanoparticles as Adjuvants and Vaccine Delivery Vehicles
    Sun, Z ; Li, W ; Lenzo, JC ; Holden, JA ; McCullough, MJ ; O'Connor, AJ ; O'Brien-Simpson, NM (FRONTIERS MEDIA SA, 2021-12-22)
    Vaccination is one of the most efficacious and cost-effective ways to protect people from infectious diseases and potentially cancer. The shift in vaccine design from disrupted whole pathogens to subunit antigens has brought attention on to vaccine delivery materials. For the last two decades, nanotechnology-based vaccines have attracted considerable attention as delivery vehicles and adjuvants to enhance immunogenicity, exemplified with the current COVID vaccines. The nanoparticle vaccines display unique features in protecting antigens from degradation, controlled antigen release and longer persisting immune response. Due to their size, shape and surface charge, they can be outstanding adjuvants to achieve various immunological effects. With the safety and biodegradable benefit of calcium phosphate nanoparticles (CaP NPs), they are an efficient carrier for vaccine design and adjuvants. Several research groups have studied CaP NPs in the field of vaccination with great advances. Although there are several reports on the overview of CaP NPs, they are limited to the application in biomedicine, drug delivery, bone regeneration and the methodologies of CaP NPs synthesis. Hence, we summarised the basic properties of CaP NPs and the recent vaccine development of CaP NPs in this review.
  • Item
    Thumbnail Image
    C-terminus amidation influences biological activity and membrane interaction of maculatin 1.1
    Zhu, S ; Li, W ; O'Brien-Simpson, N ; Separovic, F ; Sani, M-A (SPRINGER WIEN, 2021-05)
    Cationic antimicrobial peptides have been investigated for their potential use in combating infections by targeting the cell membrane of microbes. Their unique chemical structure has been investigated to understand their mode of action and optimize their dose-response by rationale design. One common feature among cationic AMPs is an amidated C-terminus that provides greater stability against in vivo degradation. This chemical modification also likely modulates the interaction with the cell membrane of bacteria yet few studies have been performed comparing the effect of the capping groups. We used maculatin 1.1 (Mac1) to assess the role of the capping groups in modulating the peptide bacterial efficiency, stability and interactions with lipid membranes. Circular dichroism results showed that C-terminus amidation maintains the structural stability of the peptide (α-helix) in contact with micelles. Dye leakage experiments revealed that amidation of the C-terminus resulted in higher membrane disruptive ability while bacteria and cell viability assays revealed that the amidated form displayed higher antibacterial ability and cytotoxicity compared to the acidic form of Mac1. Furthermore, 31P and 2H solid-state NMR showed that C-terminus amidation played a greater role in disturbance of the phospholipid headgroup but had little effect on the lipid tails. This study paves the way to better understand how membrane-active AMPs act in live bacteria.
  • Item
    Thumbnail Image
    Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting
    Hourani, T ; Holden, JA ; Li, W ; Lenzo, JC ; Hadjigol, S ; O'Brien-Simpson, NM (FRONTIERS MEDIA SA, 2021-12-20)
    The tumor microenvironment (TME) is known to have a strong influence on tumorigenesis, with various components being involved in tumor suppression and tumor growth. A protumorigenic TME is characterized by an increased infiltration of tumor associated macrophages (TAMs), where their presence is strongly associated with tumor progression, therapy resistance, and poor survival rates. This association between the increased TAMs and poor therapeutic outcomes are stemming an increasing interest in investigating TAMs as a potential therapeutic target in cancer treatment. Prominent mechanisms in targeting TAMs include: blocking recruitment, stimulating repolarization, and depletion methods. For enhancing targeting specificity multiple nanomaterials are currently being explored for the precise delivery of chemotherapeutic cargo, including the conjugation with TAM-targeting peptides. In this paper, we provide a focused literature review of macrophage biology in relation to their role in tumorigenesis. First, we discuss the origin, recruitment mechanisms, and phenotypic diversity of TAMs based on recent investigations in the literature. Then the paper provides a detailed review on the current methods of targeting TAMs, including the use of nanomaterials as novel cancer therapeutics.
  • Item
    Thumbnail Image
    C-Terminal Modification and Multimerization Increase the Efficacy of a Proline-Rich Antimicrobial Peptide
    Li, W ; O'Brien-Simpson, NM ; Yao, S ; Tailhades, J ; Reynolds, EC ; Dawson, RM ; Otvos, L ; Hossain, MA ; Separovic, F ; Wade, JD (WILEY-V C H VERLAG GMBH, 2017-01-05)
    Two series of branched tetramers of the proline-rich antimicrobial peptide (PrAMP), Chex1-Arg20, were prepared to improve antibacterial selectivity and potency against a panel of Gram-negative nosocomial pathogens including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa. First, tetramerization was achieved by dithiomaleimide (DTM) conjugation of two C-terminal-cysteine bearing dimers that also incorporated C-terminal peptide chemical modification. DTM-linked tetrameric peptides containing a C-terminal hydrazide moiety on each dimer exhibited highly potent activities in the minimum inhibitory concentration (MIC) range of 0.49-2.33 μm. A second series of tetrameric analogues with C-terminal hydrazide modification was prepared by using alternative conjugation linkers including trans-1,4-dibromo-2-butene, α,α'-dibromo-p-xylene, or 6-bismaleimidohexane to determine the effect of length on activity. Each displayed potent and broadened activity against Gram-negative nosocomial pathogens, particularly the butene-linked tetrameric hydrazide. Remarkably, the greatest MIC activity is against P. aeruginosa (0.77 μm/8 μg mL-1 ) where the monomer is inactive. None of these peptides showed any cytotoxicity to mammalian cells up to 25 times the MIC. A diffusion NMR study of the tetrameric hydrazides showed that the more active antibacterial analogues were those with a more compact structure having smaller hydrodynamic radii. The results show that C-terminal PrAMP hydrazidation together with its rational tetramerization is an effective means for increasing both diversity and potency of PrAMP action.
  • Item
    Thumbnail Image
    (Re)Defining the Proline-Rich Antimicrobial Peptide Family and the Identification of Putative New Members
    Welch, NG ; Li, W ; Hossain, MA ; Separovic, F ; O'Brien-Simpson, NM ; Wade, JD (FRONTIERS MEDIA SA, 2020-12-01)
    As we rapidly approach a post-antibiotic era in which multi-drug resistant bacteria are ever-pervasive, antimicrobial peptides (AMPs) represent a promising class of compounds to help address this global issue. AMPs are best-known for their membrane-disruptive mode of action leading to bacteria cell lysis and death. However, many AMPs are also known to be non-lytic and have intracellular modes of action. Proline-rich AMPs (PrAMPs) are one such class, that are generally membrane permeable and inhibit protein synthesis leading to a bactericidal outcome. PrAMPs are highly effective against Gram-negative bacteria and yet show very low toxicity against eukaryotic cells. Here, we review both the PrAMP family and the past and current definitions for this class of peptides. Computational analysis of known AMPs within the DRAMP database (http://dramp.cpu-bioinfor.org/) and assessment of their PrAMP-like properties have led us to develop a revised definition of the PrAMP class. As a result, we subsequently identified a number of unknown and unclassified peptides containing motifs of striking similarity to known PrAMP-based DnaK inhibitors and propose a series of new sequences for experimental evaluation and subsequent addition to the PrAMP family.
  • Item
    Thumbnail Image
    The 9-Fluorenylmethoxycarbonyl (Fmoc) Group in Chemical Peptide Synthesis - Its Past, Present, and Future
    Li, W ; O'Brien-Simpson, NM ; Hossain, MA ; Wade, JD (CSIRO PUBLISHING, 2020)
    The chemical formation of the peptide bond has long fascinated and challenged organic chemists. It requires not only the activation of the carboxyl group of an amino acid but also the protection of the Nα-amino group. The more than a century of continuous development of ever-improved protecting group chemistry has been married to dramatic advances in the chemical synthesis of peptides that, itself, was substantially enhanced by the development of solid-phase peptide synthesis by R. B. Merrifield in the 1960s. While the latter technology has continued to undergo further refinement and improvement in both its chemistry and automation, the development of the base-labile 9-fluorenylmethoxycarbonyl (Fmoc) group and its integration into current synthesis methods is considered a major landmark in the history of the chemical synthesis of peptides. The many beneficial attributes of the Fmoc group, which have yet to be surpassed by any other Nα-protecting group, allow very rapid and highly efficient synthesis of peptides, including ones of significant size and complexity, making it an even more valuable resource for research in the post-genomic world. This review charts the development and use of this Nα-protecting group and its adaptation to address the need for more green chemical peptide synthesis processes.
  • Item
    Thumbnail Image
    Recent Applications of Aggregation Induced Emission Probes for Antimicrobial Peptide Studies
    Luu, T ; Li, W ; O'Brien-Simpson, NM ; Hong, Y (WILEY-V C H VERLAG GMBH, 2021-05-03)
    Antimicrobial peptides (AMPs) are being intensively investigated as they are considered promising alternatives to antibiotics where their clinical efficacy is dwindling due to the emergence of antimicrobial resistance (AMR). Accompanying with the development of AMPs, a number of fluorescent probes have been developed to facilitate the understanding the modes of action of AMPs. These probes have been used to monitor the binding process, determine the working mechanism and evaluate the antimicrobial properties of AMPs. In particular, with the recent advance of aggregation-induced emission (AIE) fluorophores, that show many advantageous properties over traditional probes, there is an increasing research interest in using AIE probes for AMP studies. In this review, we give an overview of AMP development, highlight the recent progress of using fluorescence probes in particularly AIE probes in the AMP field and propose the future perspective of developing potent antimicrobial agents to combat AMR.
  • Item
    Thumbnail Image
    The Effect of Selective D- or Nα-Methyl Arginine Substitution on the Activity of the Proline-Rich Antimicrobial Peptide, Chex1-Arg20
    Li, W ; Sun, Z ; O'Brien-Simpson, NM ; Otvos, L ; Reynolds, EC ; Hossain, MA ; Separovic, F ; Walde, JD (FRONTIERS MEDIA SA, 2017-01-19)
    In vivo pharmacokinetics studies have shown that the proline-rich antimicrobial peptide, A3-APO, which is a discontinuous dimer of the peptide, Chex1-Arg20, undergoes degradation to small fragments at positions Pro6-Arg7 and Val19-Arg20. With the aim of minimizing or abolishing this degradation, a series of Chex1-Arg20 analogs were prepared via Fmoc/tBu solid phase peptide synthesis with D-arginine or, in some cases, peptide backbone Nα-methylated arginine, substitution at these sites. All the peptides were tested for antibacterial activity against the Gram-negative bacterium Klebsiella pneumoniae. The resulting activity of position-7 substitution of Chex1-Arg20 analogs showed that arginine-7 is a crucial residue for maintaining activity against K. pneumoniae. However, arginine-20 substitution had a much less deleterious effect on the antibacterial activity of the peptide. Moreover, none of these peptides displayed any cytotoxicity to HEK and H-4-II-E mammalian cells. These results will aid the development of more effective and stable PrAMPs via judicious amino acid substitutions.
  • Item
    Thumbnail Image
    Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria
    Li, W ; Tailhades, J ; O'Brien-Simpson, NM ; Separovic, F ; Otvos, L ; Hossain, MA ; Wade, JD (SPRINGER WIEN, 2014-10)
    The increasing resistance of pathogens to antibiotics causes a huge clinical burden that places great demands on academic researchers and the pharmaceutical industry for resolution. Antimicrobial peptides, part of native host defense, have emerged as novel potential antibiotic alternatives. Among the different classes of antimicrobial peptides, proline-rich antimicrobial peptides, predominantly sourced from insects, have been extensively investigated to study their specific modes of action. In this review, we focus on recent developments in these peptides. They show a variety of modes of actions, including mechanism shift at high concentration, non-lytic mechanisms, as well as possessing different intracellular targets and lipopolysaccharide binding activity. Furthermore, proline-rich antimicrobial peptides display the ability to not only modulate the immune system via cytokine activity or angiogenesis but also possess properties of penetrating cell membranes and crossing the blood brain barrier suggesting a role as potential novel carriers. Ongoing studies of these peptides will likely lead to the development of more potent antimicrobial peptides that may serve as important additions to the armoury of agents against bacterial infection and drug delivery.
  • Item
    Thumbnail Image
    Fluorescent Ion Efflux Screening Assay for Determining Membrane-Active Peptides
    O'Brien-Simpson, NM ; Li, W ; Pantarat, N ; Hossain, MA ; Separovic, F ; Wade, JD ; Reynolds, EC (CSIRO PUBLISHING, 2017)
    A major global health threat is the emergence of antibiotic-resistant microbes. Coupled with a lack of development of modified antibiotics, there is a need to develop new antimicrobial molecules and screening assays for them. In this study, we provide proof of concept that a large unilamellar vesicle (LUV) method used to study chloride ion efflux facilitated by ionophores and surfactant-like molecules that disrupt membrane integrity can be adapted to identify membrane-interactive antimicrobial peptides (AMPs) and to screen relative activity of AMPs. Lucigenin was encapsulated in LUVs in the presence of Cl– ion (NaCl), which quenches fluorescence, and then incubated with AMPs in 100 mM NaNO3 buffer. Upon AMP membrane interaction or disruption, the Cl– ion is exchanged with the NO3– ion, and the resultant lucigenin fluorescence is indicative of relative AMP activity. Seven AMPs were synthesized by solid-phase peptide chemistry and incubated with LUVs of different phospholipid compositions. Each AMP resulted in lucigenin fluorescence, which was dose dependent, and the relative fluorescence correlated with the minimum inhibitory concentration and minimum bactericidal concentration values for the corresponding peptide. Furthermore, using mammalian model phospholipid LUVs, lucigenin-induced fluorescence also correlated with the AMP cytotoxicity half-maximal inhibitory concentration values. The proline-rich AMP, Chex1-Arg20, which is non-lytic but interacts with the bacterial membrane resulted in lucigenin fluorescence of bacterial membrane model LUVs but not of mammalian membrane model LUVs. The fluorescent ion efflux assay developed here should have applicability for most AMPs and could be tailored to target particular bacterial species membrane composition, potentially leading to the identification of novel membrane-interactive AMPs. The rapid high-throughput method also allows for screening of relative AMP activity and toxicity before biological testing.