Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 14
  • Item
    Thumbnail Image
    Multifunctional Antimicrobial Polypeptide-Selenium Nanoparticles Combat Drug-Resistant Bacteria
    Huang, T ; Holden, JA ; Reynolds, EC ; Heath, DE ; O'Brien-Simpson, NM ; O'Connor, AJ (AMER CHEMICAL SOC, 2020-12-16)
    Antibiotic-resistant bacteria are a severe threat to human health. The World Health Organization's Global Antimicrobial Surveillance System has revealed widespread occurrence of antibiotic resistance among half a million patients across 22 countries, with Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae being the most common resistant species. Antimicrobial nanoparticles are emerging as a promising alternative to antibiotics in the fight against antimicrobial resistance. In this work, selenium nanoparticles coated with the antimicrobial polypeptide, ε-poly-l-lysine, (Se NP-ε-PL) were synthesized and their antibacterial activity and cytotoxicity were investigated. Se NP-ε-PL exhibited significantly greater antibacterial activity against all eight bacterial species tested, including Gram-positive, Gram-negative, and drug-resistant strains, than their individual components, Se NP and ε-PL. The nanoparticles showed no toxicity toward human dermal fibroblasts at the minimum inhibitory concentrations, demonstrating a therapeutic window. Furthermore, unlike the conventional antibiotic kanamycin, Se NP-ε-PL did not readily induce resistance in E. coli or S. aureus. Specifically, S. aureus began to develop resistance to kanamycin from ∼44 generations, whereas it took ∼132 generations for resistance to develop to Se NP-ε-PL. Startlingly, E. coli was not able to develop resistance to the nanoparticles over ∼300 generations. These results indicate that the multifunctional approach of combining Se NP with ε-PL to form Se NP-ε-PL is a highly efficacious new strategy with wide-spectrum antibacterial activity, low cytotoxicity, and significant delays in development of resistance.
  • Item
    Thumbnail Image
    Star-Peptide Polymers are Multi-Drug-Resistant Gram-Positive Bacteria Killers
    Li, W ; Hadjigol, S ; Mazo, AR ; Holden, J ; Lenzo, J ; Shirbin, SJ ; Barlow, A ; Shabani, S ; Huang, T ; Reynolds, EC ; Qiao, GG ; O'Brien-Simpson, NM (AMER CHEMICAL SOC, 2022-06-08)
    Antibiotic resistance in bacteria, especially Gram-positive bacteria like Staphylococcus aureus, is gaining considerable momentum worldwide and unless checked will pose a global health crisis. With few new antibiotics coming on the market, there is a need for novel antimicrobial materials that target and kill multi-drug-resistant (MDR) Gram-positive pathogens like methicillin-resistant Staphylococcus aureus (MRSA). In this study, using a novel mixed-bacteria antimicrobial assay, we show that the star-peptide polymers preferentially target and kill Gram-positive pathogens including MRSA. A major effect on the activity of the star-peptide polymer was structure, with an eight-armed structure inducing the greatest bactericidal activity. The different star-peptide polymer structures were found to induce different mechanisms of bacterial death both in vitro and in vivo. These results highlight the potential utility of peptide/polymers to fabricate materials for therapeutic development against MDR Gram-positive bacterial infections.
  • Item
    Thumbnail Image
    Celogentin mimetics as inhibitors of tubulin polymerization
    Thombare, VJ ; Holden, JA ; Reynolds, EC ; O'Brien-Simpson, NM ; Hutton, CA (WILEY, 2020-03)
    Bicyclic analogues of celogentin C have been synthesized in which the side chain-side chain cross-links are replaced by thioether bonds. Several of the simplified bicyclic peptides displayed potent inhibition of tubulin polymerization.
  • Item
    Thumbnail Image
    Architectural Effects of Star-Shaped "Structurally Nanoengineered Antimicrobial Peptide Polymers" (SNAPPs) on Their Biological Activity
    Shirbin, SJ ; Insua, I ; Holden, JA ; Lenzo, JC ; Reynolds, EC ; O'Brien-Simpson, NM ; Qiao, GG (WILEY, 2018-11)
    In this work, the effect of two key structural parameters, number of arms and arm length, of star-shaped "structurally nanoengineered antimicrobial peptide polymers" (SNAPPs) on their antimicrobial activity and biocompatibility, is investigated. A library of star-shaped SNAPPs is prepared, containing varying arm numbers and arm lengths. Antimicrobial assays are then performed to assess the capacity of the SNAPPs to disrupt the membrane, inhibit the growth, and kill pathogenic bacteria. A major finding of the study is that increasing arm number and length of SNAPPs enhanced antimicrobial activity, which can be respectively attributed to the higher local concentrations of polypeptide arms and increased α-helical content. SNAPP architecture is shown to affect the bacteria membrane state and therefore mechanism of killing. Two more potent structures with up to twice the antimicrobial activity of the previously reported SNAPP are discovered in this process. Toxicities of the SNAPPs also increase with arm number and arm length, however therapeutic index calculations identified a 16-arm SNAPP and an easier to prepare 4-arm SNAPP as the best therapeutic agents. The biocompatibility of the SNAPP with the best biological activity is also evaluated in vivo, showing no markers of systemic damage in mice.
  • Item
    Thumbnail Image
    Peripheral memory T-cell profile is modified in patients undergoing periodontal management
    Medara, N ; Lenzo, JC ; Walsh, KA ; Holden, JA ; Reynolds, EC ; Darby, IB ; O'Brien-Simpson, NM (WILEY, 2021-02)
    AIMS: T-cells are known to have a role in periodontitis, however, the effect of periodontal therapy on peripheral memory T-cells is unclear. This study evaluated variation in peripheral memory T-cells and red complex bacteria in sub-gingival plaque in patients undergoing periodontal management. METHODS: Peripheral blood mononuclear cells and sub-gingival plaque were collected from 54 periodontitis patients at baseline, 3-, 6- and 12-months post-therapy and 40 healthy controls. Periodontitis patients were divided into treatment outcome (TxO) groups based on prevalence of sites with probing depth ≥5 mm as good (<10% of sites), moderate (10-20%) or poor (>20%) at study conclusion. Naïve (TN -CCR7+ CD45RA+ ), central memory (TCM -CCR7+ CD45RA- ), effector memory (TEM -CCR7- CD45RA- ) and effector memory T-cells re-expressing CD45RA (TEMRA -CCR7- CD45RA+ ) were phenotyped using flow cytometry in CD4+ , CD8+ , CD4+ CD8+ and CD4- CD8- T-cells and red complex bacteria were quantified using qPCR. RESULTS: At baseline, periodontitis subjects had significantly greater mean probing depths and Porphyromonas gingivalis proportions, lower TN but higher CD4+ TCM , CD8+ TCM , CD4+ CD8+ TEM and CD4- CD8- TEM cell proportions compared to health. Periodontal therapy decreased mean probing depths, P. gingivalis proportions, TEM and CD4+ and CD8+ TCM cells, but increased TN and CD4+ and CD8+ TEMRA cells. The T-cell profile in the good TxO group showed therapy-related changes in CD4+ TEM , and CD8+ TN and TEM cells, whereas, no changes were observed in the poor TxO group. CONCLUSION: Management and the reduction in red complex bacteria were associated with changes in peripheral memory T-cells in periodontitis.
  • Item
    Thumbnail Image
    Biocompatibility and Osteogenic/Calcification Potential of Casein Phosphopeptide-amorphous Calcium Phosphate Fluoride
    Dawood, AE ; Manton, DJ ; Parashos, P ; Wong, RH ; Singleton, W ; Holden, JA ; O'Brien-Simpson, NM ; Reynolds, EC (ELSEVIER SCIENCE INC, 2018-03)
    INTRODUCTION: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and CPP-ACP with fluoride (CPP-ACFP) have been shown to provide bioavailable ions to promote mineralization. Hence, the aim of this study was to evaluate the materials' biocompatibility and osteogenic/calcification potential for endodontic applications. METHODS: Human and mouse osteoblast-like and fibroblast-like cell lines were incubated with 0.05%-3.0% w/v CPP-ACP and CPP-ACFP, and toxicity, proliferation, alkaline phosphatase, interleukin (IL)-1α, and IL-6 production, collagen type I, osteocalcin, and osteopontin production, and mineralization/calcification were determined. RESULTS: CPP-ACP and CPP-ACFP were non-toxic and had no significant effect on proliferation or production of the inflammatory cytokine IL-1α. Alkaline phosphatase activity of the osteoblast-like cells was significantly increased (P < .05) by CPP-ACP and CPP-ACFP, as was the production of the osteotropic cytokine IL-6, the formation of calcium mineral deposits, and the secretion of mineralization-related proteins (collagen type I and osteocalcin). CONCLUSIONS: CPP-ACP and CPP-ACFP are biocompatible and have the potential to induce osteoblastic differentiation and mineralization. Potential applications include apexification, perforation repair, vital pulp therapy, and regenerative endodontic procedures.
  • Item
    Thumbnail Image
    Outer Membrane Vesicles Prime and Activate Macrophage Inflammasomes and Cytokine Secretion In Vitro and In Vivo
    Cecil, JD ; O'Brien-Simpson, NM ; Lenzo, JC ; Holden, JA ; Singleton, W ; Perez-Gonzalez, A ; Mansell, A ; Reynolds, EC (FRONTIERS MEDIA SA, 2017-08-25)
    Outer membrane vesicles (OMVs) are proteoliposomes blebbed from the surface of Gram-negative bacteria. Chronic periodontitis is associated with an increase in subgingival plaque of Gram-negative bacteria, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. In this study, we investigated the immune-modulatory effects of P. gingivalis, T. denticola, and T. forsythia OMVs on monocytes and differentiated macrophages. All of the bacterial OMVs were phagocytosed by monocytes, M(naïve) and M(IFNγ) macrophages in a dose-dependent manner. They also induced NF-κB activation and increased TNFα, IL-8, and IL-1β cytokine secretion. P. gingivalis OMVs were also found to induce anti-inflammatory IL-10 secretion. Although unprimed monocytes and macrophages were resistant to OMV-induced cell death, lipopolysaccharide or OMV priming resulted in a significantly reduced cell viability. P. gingivalis, T. denticola, and T. forsythia OMVs all activated inflammasome complexes, as monitored by IL-1β secretion and ASC speck formation. ASC was critical for OMV-induced inflammasome formation, while AIM2-/- and Caspase-1-/- cells had significantly reduced inflammasome formation and NLRP3-/- cells exhibited a slight reduction. OMVs were also found to provide both priming and activation of the inflammasome complex. High-resolution microscopy and flow cytometry showed that P. gingivalis OMVs primed and activated macrophage inflammasomes in vivo with 80% of macrophages exhibiting inflammasome complex formation. In conclusion, periodontal pathogen OMVs were found to have significant immunomodulatory effects upon monocytes and macrophages and should therefore influence pro-inflammatory host responses associated with disease.
  • Item
    Thumbnail Image
    Porphyromonas gulae Activates Unprimed and Gamma Interferon-Primed Macrophages via the Pattern Recognition Receptors Toll-Like Receptor 2 (TLR2), TLR4, and NOD2
    Holden, JA ; O'Brien-Simpson, NM ; Lenzo, JC ; Orth, RKH ; Mansell, A ; Reynolds, EC ; McCormick, B (AMER SOC MICROBIOLOGY, 2017-09)
    Porphyromonas gulae is an anaerobic, Gram-negative coccobacillus that has been associated with periodontal disease in companion animals. The aims of this study were to analyze the ligation of pattern recognition receptors by P. gulae and the subsequent activation of macrophages. Exposure of HEK cells transfected with Toll-like receptors (TLRs) or NOD-like receptors to P. gulae resulted in the ligation of TLR2, TLR4, and NOD2. The effects of this engagement of receptors were investigated by measuring the synthesis of nitric oxide (NO), CD86 expression, and inflammatory cytokine production by wild-type, TLR2-/-, and TLR4-/- macrophages. The addition of P. gulae to unprimed and gamma interferon (IFN-γ)-primed (M1 phenotype) macrophages significantly increased the surface expression of CD86, but only M1 macrophages produced nitric oxide. P. gulae-induced expression of CD86 on unprimed macrophages was dependent on both TLR2 and TLR4, but CD86 expression and NO production in M1 macrophages were only TLR2 dependent. P. gulae induced an increase in secretion of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12p70, IL-13, tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1α (MIP-1α) by M1 macrophages compared to that by unprimed controls. Among these cytokines, secretion of IL-6 and TNF-α by M1 macrophages was dependent on either TLR2 or TLR4. Our data indicate that TLR2 and TLR4 are important for P. gulae activation of unprimed macrophages and that activation and effector functions induced in M1 macrophages by P. gulae are mainly dependent on TLR2. In conclusion, P. gulae induces a strong TLR2-dependent inflammatory M1 macrophage response which may be important in establishing the chronic inflammation associated with periodontal disease in companion animals.
  • Item
    Thumbnail Image
    Unprimed, M1 and M2 Macrophages Differentially Interact with Porphyromonas gingivalis
    Lam, RS ; O'Brien-Simpson, NM ; Holden, JA ; Lenzo, JC ; Fong, SB ; Reynolds, EC ; Yilmaz, Ö (PUBLIC LIBRARY SCIENCE, 2016-07-06)
    Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Tissue macrophages are amongst the first immune cells to respond to bacteria and depending on the cytokine profile at the infection site, macrophages are primed to react to infection in different ways. Priming of naive macrophages with IFN-γ produces a classical pro-inflammatory, antibacterial M1 macrophage after TLR ligation, whereas priming with IL-4 induces an anti-inflammatory tissue-repair M2 phenotype. Previous work has shown that M1 are preferentially generated in gingival tissue following infection with P. gingivalis. However, few studies have investigated the interactions of macrophage subsets with P. gingivalis cells. The aim of this study was to determine the ability of naive, M1 and M2 macrophages to phagocytose P. gingivalis and investigate how this interaction affects both the bacterial cell and the macrophage. M1 and M2 macrophages were both found to have enhanced phagocytic capacity compared with that of naive macrophages, however only the naive and M1 macrophages were able to produce a respiratory burst in order to clear the bacteria from the phagosome. P. gingivalis was found to persist in naive and M2, but not M1 macrophages for 24 hours. Phagocytosis of P. gingivalis also induced high levels of TNF-α, IL-12 and iNOS in M1 macrophages, but not in naive or M2 macrophages. Furthermore, infection of macrophages with P. gingivalis at high bacteria to macrophage ratios, while inducing an inflammatory response, was also found to be deleterious to macrophage longevity, with high levels of apoptotic cell death found in macrophages after infection. The activation of M1 macrophages observed in this study may contribute to the initiation and maintenance of a pro-inflammatory state during chronic periodontitis.
  • Item
    Thumbnail Image
    A therapeutic Porphyromonas gingivalis gingipain vaccine induces neutralising IgG1 antibodies that protect against experimental periodontitis
    O'Brien-Simpson, NM ; Holden, JA ; Lenzo, JC ; Tan, Y ; Brammar, GC ; Walsh, KA ; Singleton, W ; Orth, RKH ; Slakeski, N ; Cross, KJ ; Darby, IB ; Becher, D ; Rowe, T ; Morelli, AB ; Hammet, A ; Nash, A ; Brown, A ; Ma, B ; Vingadassalom, D ; McCluskey, J ; Kleanthous, H ; Reynolds, EC (SPRINGERNATURE, 2016-12-01)
    Porphyromonas gingivalis infected mice with an established P. gingivalis-specific inflammatory immune response were protected from developing alveolar bone resorption by therapeutic vaccination with a chimera (KAS2-A1) immunogen targeting the major virulence factors of the bacterium, the gingipain proteinases. Protection was characterised by an antigen-specific IgG1 isotype antibody and Th2 cell response. Adoptive transfer of KAS2-A1-specific IgG1 or IgG2 expressing B cells confirmed that IgG1-mediated protection. Furthermore, parenteral or intraoral administration of KAS2-A1-specific polyclonal antibodies protected against the development of P. gingivalis-induced bone resorption. The KAS2-A1-specific antibodies neutralised the gingipains by inhibiting: proteolytic activity, binding to host cells/proteins and co-aggregation with other periodontal bacteria. Combining key gingipain sequences into a chimera vaccine produced an effective therapeutic intervention that protected against P. gingivalis-induced periodontitis.