Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Bacterial Fluorescent-dextran Diffusion Assay
    O’Brien-Simpson, N ; Pantarat, N ; Walsh, K ; Reynolds, E ; Sani, M-A ; Separovic, F (Bio-Protocol, LLC, 2014)
  • Item
    Thumbnail Image
    Fluorescent Ion Efflux Screening Assay for Determining Membrane-Active Peptides
    O'Brien-Simpson, NM ; Li, W ; Pantarat, N ; Hossain, MA ; Separovic, F ; Wade, JD ; Reynolds, EC (CSIRO PUBLISHING, 2017)
    A major global health threat is the emergence of antibiotic-resistant microbes. Coupled with a lack of development of modified antibiotics, there is a need to develop new antimicrobial molecules and screening assays for them. In this study, we provide proof of concept that a large unilamellar vesicle (LUV) method used to study chloride ion efflux facilitated by ionophores and surfactant-like molecules that disrupt membrane integrity can be adapted to identify membrane-interactive antimicrobial peptides (AMPs) and to screen relative activity of AMPs. Lucigenin was encapsulated in LUVs in the presence of Cl– ion (NaCl), which quenches fluorescence, and then incubated with AMPs in 100 mM NaNO3 buffer. Upon AMP membrane interaction or disruption, the Cl– ion is exchanged with the NO3– ion, and the resultant lucigenin fluorescence is indicative of relative AMP activity. Seven AMPs were synthesized by solid-phase peptide chemistry and incubated with LUVs of different phospholipid compositions. Each AMP resulted in lucigenin fluorescence, which was dose dependent, and the relative fluorescence correlated with the minimum inhibitory concentration and minimum bactericidal concentration values for the corresponding peptide. Furthermore, using mammalian model phospholipid LUVs, lucigenin-induced fluorescence also correlated with the AMP cytotoxicity half-maximal inhibitory concentration values. The proline-rich AMP, Chex1-Arg20, which is non-lytic but interacts with the bacterial membrane resulted in lucigenin fluorescence of bacterial membrane model LUVs but not of mammalian membrane model LUVs. The fluorescent ion efflux assay developed here should have applicability for most AMPs and could be tailored to target particular bacterial species membrane composition, potentially leading to the identification of novel membrane-interactive AMPs. The rapid high-throughput method also allows for screening of relative AMP activity and toxicity before biological testing.
  • Item
    Thumbnail Image
    A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity
    O'Brien-Simpson, NM ; Pantarat, N ; Attard, TJ ; Walsh, KA ; Reynolds, EC ; Castanho, MARB (PUBLIC LIBRARY SCIENCE, 2016-03-17)
    We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy.
  • Item
    Thumbnail Image
    Maculatin 1.1 Disrupts Staphylococcus aureus Lipid Membranes via a Pore Mechanism
    Sani, M-A ; Whitwell, TC ; Gehman, JD ; Robins-Browne, RM ; Pantarat, N ; Attard, TJ ; Reynolds, EC ; O'Brien-Simpson, NM ; Separovic, F (AMER SOC MICROBIOLOGY, 2013-08)
    Maculatin 1.1 (Mac1) showed potent activity against Staphylococcus aureus with an MIC of 7 μM. The mode of action of Mac1 was investigated by combining assays with S. aureus cells and lipid vesicles mimicking their membrane composition. A change in Mac1 conformation was monitored by circular dichroism from random coil to ca. 70% α-helix structure in contact with vesicles. Electron micrographs of S. aureus incubated with Mac1 showed rough and rippled cell surfaces. An uptake of 65% of small (FD, 4 kDa [FD-4]) and 35% of large (RD, 40 kDa [RD-40]) fluorescent dextrans by S. aureus was observed by flow cytometry and indicate that Mac1 formed a pore of finite size. In model membranes with both dyes encapsulated together, the full release of FD-4 occurred, but only 40% of RD-40 was reached, supporting the flow cytometry results, and indicating a pore size between 1.4 and 4.5 nm. Finally, solid-state nuclear magnetic resonance showed formation of an isotropic phase signifying highly mobile lipids such as encountered in a toroidal pore structure. Overall, Mac1 is a promising antimicrobial peptide with the potent capacity to form pores in S. aureus membranes.