Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    The Potential of Calcium Phosphate Nanoparticles as Adjuvants and Vaccine Delivery Vehicles
    Sun, Z ; Li, W ; Lenzo, JC ; Holden, JA ; McCullough, MJ ; O'Connor, AJ ; O'Brien-Simpson, NM (FRONTIERS MEDIA SA, 2021-12-22)
    Vaccination is one of the most efficacious and cost-effective ways to protect people from infectious diseases and potentially cancer. The shift in vaccine design from disrupted whole pathogens to subunit antigens has brought attention on to vaccine delivery materials. For the last two decades, nanotechnology-based vaccines have attracted considerable attention as delivery vehicles and adjuvants to enhance immunogenicity, exemplified with the current COVID vaccines. The nanoparticle vaccines display unique features in protecting antigens from degradation, controlled antigen release and longer persisting immune response. Due to their size, shape and surface charge, they can be outstanding adjuvants to achieve various immunological effects. With the safety and biodegradable benefit of calcium phosphate nanoparticles (CaP NPs), they are an efficient carrier for vaccine design and adjuvants. Several research groups have studied CaP NPs in the field of vaccination with great advances. Although there are several reports on the overview of CaP NPs, they are limited to the application in biomedicine, drug delivery, bone regeneration and the methodologies of CaP NPs synthesis. Hence, we summarised the basic properties of CaP NPs and the recent vaccine development of CaP NPs in this review.
  • Item
    Thumbnail Image
    C-terminus amidation influences biological activity and membrane interaction of maculatin 1.1
    Zhu, S ; Li, W ; O'Brien-Simpson, N ; Separovic, F ; Sani, M-A (SPRINGER WIEN, 2021-05)
    Cationic antimicrobial peptides have been investigated for their potential use in combating infections by targeting the cell membrane of microbes. Their unique chemical structure has been investigated to understand their mode of action and optimize their dose-response by rationale design. One common feature among cationic AMPs is an amidated C-terminus that provides greater stability against in vivo degradation. This chemical modification also likely modulates the interaction with the cell membrane of bacteria yet few studies have been performed comparing the effect of the capping groups. We used maculatin 1.1 (Mac1) to assess the role of the capping groups in modulating the peptide bacterial efficiency, stability and interactions with lipid membranes. Circular dichroism results showed that C-terminus amidation maintains the structural stability of the peptide (α-helix) in contact with micelles. Dye leakage experiments revealed that amidation of the C-terminus resulted in higher membrane disruptive ability while bacteria and cell viability assays revealed that the amidated form displayed higher antibacterial ability and cytotoxicity compared to the acidic form of Mac1. Furthermore, 31P and 2H solid-state NMR showed that C-terminus amidation played a greater role in disturbance of the phospholipid headgroup but had little effect on the lipid tails. This study paves the way to better understand how membrane-active AMPs act in live bacteria.
  • Item
    Thumbnail Image
    Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting
    Hourani, T ; Holden, JA ; Li, W ; Lenzo, JC ; Hadjigol, S ; O'Brien-Simpson, NM (FRONTIERS MEDIA SA, 2021-12-20)
    The tumor microenvironment (TME) is known to have a strong influence on tumorigenesis, with various components being involved in tumor suppression and tumor growth. A protumorigenic TME is characterized by an increased infiltration of tumor associated macrophages (TAMs), where their presence is strongly associated with tumor progression, therapy resistance, and poor survival rates. This association between the increased TAMs and poor therapeutic outcomes are stemming an increasing interest in investigating TAMs as a potential therapeutic target in cancer treatment. Prominent mechanisms in targeting TAMs include: blocking recruitment, stimulating repolarization, and depletion methods. For enhancing targeting specificity multiple nanomaterials are currently being explored for the precise delivery of chemotherapeutic cargo, including the conjugation with TAM-targeting peptides. In this paper, we provide a focused literature review of macrophage biology in relation to their role in tumorigenesis. First, we discuss the origin, recruitment mechanisms, and phenotypic diversity of TAMs based on recent investigations in the literature. Then the paper provides a detailed review on the current methods of targeting TAMs, including the use of nanomaterials as novel cancer therapeutics.
  • Item
    Thumbnail Image
    Peripheral memory T-cell profile is modified in patients undergoing periodontal management
    Medara, N ; Lenzo, JC ; Walsh, KA ; Holden, JA ; Reynolds, EC ; Darby, IB ; O'Brien-Simpson, NM (WILEY, 2021-02)
    AIMS: T-cells are known to have a role in periodontitis, however, the effect of periodontal therapy on peripheral memory T-cells is unclear. This study evaluated variation in peripheral memory T-cells and red complex bacteria in sub-gingival plaque in patients undergoing periodontal management. METHODS: Peripheral blood mononuclear cells and sub-gingival plaque were collected from 54 periodontitis patients at baseline, 3-, 6- and 12-months post-therapy and 40 healthy controls. Periodontitis patients were divided into treatment outcome (TxO) groups based on prevalence of sites with probing depth ≥5 mm as good (<10% of sites), moderate (10-20%) or poor (>20%) at study conclusion. Naïve (TN -CCR7+ CD45RA+ ), central memory (TCM -CCR7+ CD45RA- ), effector memory (TEM -CCR7- CD45RA- ) and effector memory T-cells re-expressing CD45RA (TEMRA -CCR7- CD45RA+ ) were phenotyped using flow cytometry in CD4+ , CD8+ , CD4+ CD8+ and CD4- CD8- T-cells and red complex bacteria were quantified using qPCR. RESULTS: At baseline, periodontitis subjects had significantly greater mean probing depths and Porphyromonas gingivalis proportions, lower TN but higher CD4+ TCM , CD8+ TCM , CD4+ CD8+ TEM and CD4- CD8- TEM cell proportions compared to health. Periodontal therapy decreased mean probing depths, P. gingivalis proportions, TEM and CD4+ and CD8+ TCM cells, but increased TN and CD4+ and CD8+ TEMRA cells. The T-cell profile in the good TxO group showed therapy-related changes in CD4+ TEM , and CD8+ TN and TEM cells, whereas, no changes were observed in the poor TxO group. CONCLUSION: Management and the reduction in red complex bacteria were associated with changes in peripheral memory T-cells in periodontitis.
  • Item
    Thumbnail Image
    Peripheral T helper cell profiles during management of periodontitis
    Medara, N ; Lenzo, JC ; Walsh, KA ; O'Brien-Simpson, NM ; Reynolds, EC ; Darby, IB (WILEY, 2021-01)
    AIM: Periodontitis has been associated with other systemic diseases with underlying inflammation responsible for the shared link. This study evaluated longitudinal variation in peripheral T helper cells in periodontitis patients undergoing management over 1 year. MATERIALS AND METHODS: Periodontal parameters and peripheral blood mononuclear cells (PBMCs) were collected from 54 periodontitis patients at baseline, and 3-, 6- and 12-months post-treatment and 40 healthy controls. IFN-γ+ , IL-4+ , IL-17+ and Foxp3+ and their double-positive expression were identified in CD4+ and TCRαβ+ cells using flow cytometry. PBMCs were incubated with P. gingivalis, and IFN-γ, IL-4, IL-17 and IL-10 in cell supernatant were measured by ELISA. Cells and cytokines were also assessed based on clinical response to treatment where good (<10% of sites), moderate (10-20%) and poor (>20%) treatment outcome (TxO) groups had probing depths of ≥5 mm at study conclusion. RESULTS: IFN-γ+ cells were lower at baseline, and 3- and 6-months compared to health, whereas Foxp3+ cells were increased at 12-months compared to all preceding timepoints and health. The good TxO group showed treatment-related variation in IFN-γ+ and Foxp3+ cells, whereas the poor TxO group did not. IFN-γ and IL-17 cytokine expression in cell supernatants was significantly lower at baseline compared to health, and IFN-γ and IL-10 showed treatment-related decrease. CONCLUSION: This study suggests that IFN-γ+ and Foxp3+ cells may have a role in the systemic compartment in periodontitis. Periodontal management has local and systemic effects, and thus, assessment and management of periodontitis should form an integral part of overall systemic health.
  • Item
    Thumbnail Image
    Peripheral neutrophil phenotypes during management of periodontitis
    Medara, N ; Lenzo, JC ; Walsh, KA ; Reynolds, EC ; O'Brien-Simpson, NM ; Darby, IB (WILEY, 2021-01)
    BACKGROUND AND OBJECTIVES: Neutrophils are emerging as a key player in periodontal pathogenesis. The surface expression of cellular markers enables functional phenotyping of neutrophils which have distinct roles in disease states. This study aimed to evaluate the effect of periodontal management on neutrophil phenotypes in peripheral blood in periodontitis patients over one year. MATERIALS AND METHODS: Peripheral blood and the periodontal parameters, mean probing depth and percentage of sites with bleeding on probing (%BOP), were collected from 40 healthy controls and 54 periodontitis patients at baseline and 3-, 6- and 12- months post-treatment. Flow cytometry was used to identify CD11b+ , CD16b+ , CD62L- and CD66b+ expression on neutrophils, neutrophil maturation stages as promyelocytes (CD11b- CD16b- ), metamyelocytes (CD11b+ CD16b- ) and mature neutrophils (CD11b+ CD16b+ ), and suppressive neutrophil phenotype as bands (CD16dim CD62Lbright ), normal neutrophils (CD16bright CD62Lbright ) and suppressive neutrophils (CD16bright CD62Ldim ). RESULTS: CD62L- expression decreased with treatment. No differences were observed in neutrophil maturation stages in health or disease upon treatment. Suppressive and normal neutrophils showed a reciprocal relationship, where suppressive neutrophils decreased with treatment and normal neutrophils increased with treatment. In addition, %BOP was associated with suppressive neutrophils. CONCLUSION: This study demonstrates that management of periodontitis significantly modifies distinct neutrophil phenotypes in peripheral blood. Suppressive neutrophils may play a role in the pathogenesis of periodontitis. However, their exact role is unclear and requires further investigation.
  • Item
    Thumbnail Image
    Bugs and Brains, the Gut and Mental Health Study: a mixed-methods study investigating microbiota composition and function in anxiety, depression and irritable bowel syndrome
    Simpson, CA ; Schwartz, OS ; Eliby, D ; Butler, CA ; Huang, K ; O'Brien-Simpson, N ; Callaghan, BL ; Dashper, SG ; Gooley, PR ; Whittle, S ; Haslam, N ; Simmons, JG (BMJ PUBLISHING GROUP, 2021)
    INTRODUCTION: Research has highlighted relationships between the micro-organisms that inhabit our gastrointestinal tract (oral and gut microbiota) with host mood and gastrointestinal functioning. Mental health disorders and functional gastrointestinal disorders co-occur at high rates, although the mechanisms underlying these associations remain unclear. The Bugs and Brains Study aims to investigate complex relationships between anxiety/depression and irritable bowel syndrome (IBS) in two ways. First, its primary component will compare the gut and oral microbiota in females with anxiety/depression and/or IBS relative to controls, and investigate underlying physiological, endocrine and immune factors, as well as associations with diet and psychosocial factors. In an ancillary component, the study will also investigate gastrointestinal and mental health symptoms in a larger sample, and explore relationships with diet, exercise, oral health, substance use, medical history, early life adversity and psychosocial factors. METHODS AND ANALYSIS: The Bugs and Brains Study aims to recruit 160 females to the primary component: (1) 40 controls; (2) 40 participants with a depressive/anxiety disorder, but no IBS; (3) 40 participants with IBS, but no depressive/anxiety disorder and (4) 40 participants with both depressive/anxiety disorder and IBS. Participation is completed within 1 month, and involves comprehensive questionnaires, anthropometrics, a diagnostic clinical interview, collection of two saliva samples, and stool, urine and hair samples. This study aims to use a systems biology approach to characterise oral and gut microbial composition and function using 16S rRNA gene sequencing and nuclear MR spectroscopy. As part of the ancillary component, it will collect questionnaire data from 1000 participants aged 18-40 years, capturing mental health, gastrointestinal health, oral health, diet and psychosocial factors. ETHICS AND DISSEMINATION: Approval was granted by the University of Melbourne Human Research Ethics Committee (#1749221). All participants voluntarily provided informed consent. Results will be published in peer-reviewed journals and presented at scientific conferences.
  • Item
    Thumbnail Image
    Recent Applications of Aggregation Induced Emission Probes for Antimicrobial Peptide Studies
    Luu, T ; Li, W ; O'Brien-Simpson, NM ; Hong, Y (WILEY-V C H VERLAG GMBH, 2021-05-03)
    Antimicrobial peptides (AMPs) are being intensively investigated as they are considered promising alternatives to antibiotics where their clinical efficacy is dwindling due to the emergence of antimicrobial resistance (AMR). Accompanying with the development of AMPs, a number of fluorescent probes have been developed to facilitate the understanding the modes of action of AMPs. These probes have been used to monitor the binding process, determine the working mechanism and evaluate the antimicrobial properties of AMPs. In particular, with the recent advance of aggregation-induced emission (AIE) fluorophores, that show many advantageous properties over traditional probes, there is an increasing research interest in using AIE probes for AMP studies. In this review, we give an overview of AMP development, highlight the recent progress of using fluorescence probes in particularly AIE probes in the AMP field and propose the future perspective of developing potent antimicrobial agents to combat AMR.