Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Identification of a new membrane-associated protein that influences transport/maturation of gingipains and adhesins of Porphyromonas gingivalis
    Sato, K ; Sakai, E ; Veith, PD ; Shoji, M ; Kikuchi, Y ; Yukitake, H ; Ohara, N ; Naito, M ; Okamoto, K ; Reynolds, EC ; Nakayama, K (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2005-03-11)
    The dual membrane envelopes of Gram-negative bacteria provide two barriers of unlike nature that regulate the transport of molecules into and out of organisms. Organisms have developed several systems for transport across the inner and outer membranes. The Gram-negative periodontopathogenic bacterium Porphyromonas gingivalis produces proteinase and adhesin complexes, gingipains/adhesins, on the cell surface and in the extracellular milieu as one of the major virulence factors. Gingipains and/or adhesins are encoded by kgp, rgpA, rgpB, and hagA on the chromosome. In this study, we isolated a P. gingivalis mutant (porT), which showed very weak activities of gingipains in the cell lysates and culture supernatants. Subcellular fractionation and immunoblot analysis demonstrated that precursor forms of gingipains and adhesins were accumulated in the periplasmic space of the porT mutant cells. Peptide mass fingerprinting and N-terminal amino acid sequencing of the precursor proteins and the kgp'-'rgpB chimera gene product in the porT mutant indicated that these proteins lacked the signal peptide regions, consistent with their accumulation in the periplasm. The PorT protein seemed to be membrane-associated and exposed to the periplasmic space, as revealed by subcellular fractionation and immunoblot analysis using anti-PorT antiserum. These results suggest that the membrane-associated protein PorT is essential for transport of the kgp, rgpA, rgpB, and hagA gene products across the outer membrane from the periplasm to the cell surface, where they are processed and matured.
  • Item
    Thumbnail Image
    An immune response directed to proteinase and adhesin functional epitopes protects against Porphyromonas gingivalis-induced periodontal bone loss
    O'Brien-Simpson, NM ; Pathirana, RD ; Paolini, RA ; Chen, YY ; Veith, PD ; Tam, V ; Ally, N ; Pike, RN ; Reynolds, EC (AMER ASSOC IMMUNOLOGISTS, 2005-09-15)
    Porphyromonas gingivalis, a pathogen associated with periodontitis, bound to fibrinogen, fibronectin, hemoglobin, and collagen type V with a similar profile to that of its major virulence factor, the cell surface RgpA-Kgp proteinase-adhesin complex. Using peptide-specific, purified Abs in competitive inhibition ELISAs and epitope mapping assays, we have identified potential adhesin binding motifs (ABMs) of the RgpA-Kgp complex responsible for binding to host proteins. The RgpA-Kgp complex and synthetic ABM and proteinase active site peptides conjugated to diphtheria toxoid, when used as vaccines, protected against P. gingivalis-induced periodontal bone loss in the murine periodontitis model. The most efficacious peptide and protein vaccines were found to induce a high-titer IgG1 Ab response. Furthermore, mice protected in the lesion and periodontitis models had a predominant P. gingivalis-specific IL-4 response, whereas mice with disease had a predominant IFN-gamma response. The peptide-specific Abs directed to the ABM2 sequence (EGLATATTFEEDGVA) protected against periodontal bone loss and inhibited binding of the RgpA-Kgp complex to fibrinogen, fibronectin, and collagen type V. Furthermore, the peptide-specific Abs directed to the ABM3 sequence (GTPNPNPNPNPNPNPGT) protected against periodontal bone loss and inhibited binding to hemoglobin. However, the most protective Abs were those directed to the active sites of the RgpA and Kgp proteinases. The results suggest that when the RgpA-Kgp complex, or functional binding motif or active site peptides are used as a vaccine, they induce a Th2 response that blocks function of the RgpA-Kgp complex and protects against periodontal bone loss.