Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 20
  • Item
    Thumbnail Image
    Taxonomy of Oral Bacteria
    Byrne, SJ ; Butler, CA ; Reynolds, EC ; Dashper, SG ; Gurtler, V ; Trevors, JT (ELSEVIER ACADEMIC PRESS INC, 2018-01-01)
    The oral cavity is a collection of diverse microenvironments, each inhabited by a community of microorganisms, the majority of which are bacteria and their phages. Given the appropriate conditions, some of these bacteria can cause destruction of the teeth or their supporting hard and soft tissues. For over 300 years microbiologists have been characterising these microbial communities, in both oral health and disease. In this chapter, we take the reader on a journey through time as we discuss the various methods that have been utilised in the characterisation of the bacteria calling the oral cavity home, and how the use of these methods has informed our understanding of oral bacterial communities and the diversity of their members.
  • Item
    Thumbnail Image
    Incorporation of the microencapsulated antimicrobial agent phytoncide into denture base resin
    An, S ; Judge, RB ; Wong, RH ; Arzmi, MH ; Palamara, JE ; Dashper, SG (WILEY, 2018-09)
    BACKGROUND: This study aimed to fabricate a denture base resin (DBR) containing phytoncide microcapsules (PTMCs) and determine the mechanical properties of the resin and antifungal activity. METHODS: Fifty-four heat-cured rectangular DBR specimens (64 × 10 × 3.3 ± 0.2 mm) containing nine concentrations of PTMC between 0 and 5% (wt/wt) were fabricated and subjected to a three-point bending test. A phytoncide release bioassay was developed using DBR containing 0% and 2.5% PTMCs (wt/wt) in a 24 well-plate assay with incubation of Porphyromonas gingivalis at 37 °C for 74 h. The antifungal activity of PTMCs against Candida albicans, in a pH 5.5 acidic environment was determined in a plate assay. RESULTS: Flexural strength decreased with increasing PTMC concentration from 97.58 ± 4.79 MPa for the DBR alone to 53.66 ± 2.46 MPa for DBR containing 5.0% PTMC. No release of phytoncide from the PTMCs in the DBR was detected at pH 7.4. The PTMCs had a minimal inhibitory concentration of 2.6% (wt/vol) against C. albicans at pH 5.5. CONCLUSIONS: PTMCs can be added to DBR 2.5% (wt/wt) without adversely affecting flexural strength. PTMCs released the antimicrobial agent at pH 5.5 at concentrations sufficient to inhibit the growth of the C. albicans.
  • Item
    Thumbnail Image
    Natural history of dental caries in very young Australian children
    Gussy, M ; Ashbolt, R ; Carpenter, L ; Virgo-Milton, M ; Calache, H ; Dashper, S ; Leong, P ; de Silva, A ; de Livera, A ; Simpson, J ; Waters, E (WILEY, 2016-05)
    BACKGROUND: Whilst the global burden of caries is increasing, the trajectory of decay in young children and the point at which prevention should occur has not been well established. AIM: To identify the 'natural history' of dental caries in early childhood. DESIGN: A birth cohort study was established with 467 mother/child dyads followed at 1, 6, 12, 18, and 36 months of age. Parent-completed surveys captured demographic, social, and behavioural data, and oral examinations provided clinical and data. RESULTS: Eight per cent of children (95% confidence interval (CI): 5-12%) at 18 months and 23% (95% CI: 18-28%) at 36 months experienced decay. Interesting lesion behaviour was found between 18 and 36 months, with rapid development of new lesions on sound teeth (70% of teeth, 95% CI: 63-76%) and regression of many lesions from non-cavitated lesions to sound (23% of teeth, 95% CI: 17-30%). Significant associations were found between soft drink consumption and lesion progression. CONCLUSIONS: Findings suggest optimal time periods for screening and prevention of a disease which significantly impacts multiple health and well-being outcomes across the life course.
  • Item
    Thumbnail Image
    Bacterial membrane vesicles transport their DNA cargo into host cells
    Bitto, NJ ; Chapman, R ; Pidot, S ; Costin, A ; Lo, C ; Choi, J ; D'Cruze, T ; Reynolds, EC ; Dashper, SG ; Turnbull, L ; Whitchurch, CB ; Stinear, TP ; Stacey, KJ ; Ferrero, RL (NATURE PORTFOLIO, 2017-08-01)
    Bacterial outer membrane vesicles (OMVs) are extracellular sacs containing biologically active products, such as proteins, cell wall components and toxins. OMVs are reported to contain DNA, however, little is known about the nature of this DNA, nor whether it can be transported into host cells. Our work demonstrates that chromosomal DNA is packaged into OMVs shed by bacteria during exponential phase. Most of this DNA was present on the external surfaces of OMVs, with smaller amounts located internally. The DNA within the internal compartments of Pseudomonas aeruginosa OMVs were consistently enriched in specific regions of the bacterial chromosome, encoding proteins involved in virulence, stress response, antibiotic resistance and metabolism. Furthermore, we demonstrated that OMVs carry DNA into eukaryotic cells, and this DNA was detectable by PCR in the nuclear fraction of cells. These findings suggest a role for OMV-associated DNA in bacterial-host cell interactions and have implications for OMV-based vaccines.
  • Item
    Thumbnail Image
    Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles
    Fleetwood, AJ ; Lee, MKS ; Singleton, W ; Achuthan, A ; Lee, M-C ; O'Brien-Simpson, NM ; Cook, AD ; Murphy, AJ ; Dashper, SG ; Reynolds, EC ; Hamilton, JA (FRONTIERS MEDIA SA, 2017-08-04)
    Porphyromonas gingivalis is one of the bacterial species most closely associated with periodontitis and can shed large numbers of outer membrane vesicles (OMVs), which are increasingly thought to play a significant role in bacterial virulence and pathogenicity. Macrophages are amongst the first immune cells to respond to bacteria and their products, so we sought to directly compare the response of macrophages to P. gingivalis or its purified OMVs. Macrophages stimulated with OMVs produced large amounts of TNFα, IL-12p70, IL-6, IL-10, IFNβ, and nitric oxide compared to cells infected with P. gingivalis, which produced very low levels of these mediators. Both P. gingivalis and OMVs induced a shift in macrophage metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, which was supported by enhanced lactate release, decreased mitochondrial oxygen consumption with reduced spare respiratory capacity, as well as increased mitochondrial reactive oxygen species (ROS) production. Corresponding to this metabolic shift, gene expression analysis of macrophages infected with P. gingivalis or stimulated with OMVs revealed a broad transcriptional upregulation of genes critical to glycolysis and a downregulation of genes associated with the TCA cycle. Upon examination of inflammasome signaling and pyroptosis it was found that P. gingivalis did not activate the inflammasome in macrophages as the mature forms of caspase-1, IL-1β, and IL-18 were not detected and there was no extracellular release of lactate dehydrogenase (LDH) or 7-AAD staining. In comparison, macrophages stimulated with OMVs potently activated caspase-1, produced large amounts of IL-1β, IL-18, released LDH, and were positive for 7-AAD indicative of pyroptotic cell death. These data directly quantitate the distinct effects of P. gingivalis and its OMVs on macrophage inflammatory phenotype, mitochondrial function, inflammasome activation, and pyroptotic cell death that may have potential implications for their roles in chronic periodontitis.
  • Item
    Thumbnail Image
    Effect of azithromycin on a red complex polymicrobial biofilm
    Ong, HS ; Oettinger-Barak, O ; Dashper, SG ; Darby, IB ; Tan, KH ; Reynolds, EC (TAYLOR & FRANCIS LTD, 2017)
    Azithromycin has recently gained popularity for the treatment of periodontal disease, despite sparse literature supporting efficiency in treating periodontal bacterial biofilms. The aim of this study was to evaluate the effect of azithromycin on biofilms comprised of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in comparison to an amoxicillin and metronidazole combination. P. gingivalis W50, T. denticola ATCC35405, and T. forsythia ATCC43037 grown under anaerobic conditions at 37°C were aliquoted into 96-well flat-bottom plates in different combinations with addition of azithromycin or amoxicillin + metronidazole at various concentrations. For the biofilm assay, the plates were incubated at 37°C anaerobically for 48 h, after which the biofilms were stained with crystal violet and measured for absorbance at AU620. In this model, polymicrobial biofilms of P. gingivalis + T. denticola, P. gingivalis + T. forsythia, and T. denticola + T. forsythia were cultured. Combination of all three bacteria enhanced biofilm biomass. Azithromycin demonstrated a minimal biofilm inhibitory concentration (MBIC) of 10.6 mg/L, while the amoxicillin + metronidazole combination was more effective in inhibiting biofilm formation with a MBIC of 1.63 mg/L. Polymicrobial biofilm formation was demonstrated by combination of all three red complex bacteria. Azithromycin was ineffective in preventing biofilm formation within a clinically achievable concentration, whereas the combination of amoxicillin and metronidazole was more effective for this purpose.
  • Item
    Thumbnail Image
    PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System
    Heath, JE ; Seers, CA ; Veith, PD ; Butler, CA ; Muhammad, NAN ; Chen, Y-Y ; Slakeski, N ; Peng, B ; Zhang, L ; Dashper, SG ; Cross, KJ ; Cleal, SM ; Moore, C ; Reynolds, EC ; Motaleb, MA (PUBLIC LIBRARY SCIENCE, 2016-10-06)
    Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a β-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS.
  • Item
    Thumbnail Image
    Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms
    Dashper, SG ; Catmull, DV ; Liu, S-W ; Myroforidis, H ; Zalizniak, I ; Palamara, JEA ; Huq, NL ; Reynolds, EC ; Omri, A (PUBLIC LIBRARY SCIENCE, 2016-09-02)
    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.
  • Item
    Thumbnail Image
    Porphyromonas gulae Has Virulence and Immunological Characteristics Similar to Those of the Human Periodontal Pathogen Porphyromonas gingivalis
    Lenzo, JC ; O'Brien-Simpson, NM ; Orth, RK ; Mitchell, HL ; Dashper, SG ; Reynolds, EC ; McCormick, BA (AMER SOC MICROBIOLOGY, 2016-09)
    Periodontitis is a significant problem in companion animals, and yet little is known about the disease-associated microbiota. A major virulence factor for the human periodontal pathogen Porphyromonas gingivalis is the lysyl- and arginyl-specific proteolytic activity of the gingipains. We screened several Porphyromonas species isolated from companion animals-P. asaccharolytica, P. circumdentaria, P. endodontalis, P. levii, P. gulae, P. macacae, P. catoniae, and P. salivosa-for Lys- and Arg-specific proteolytic activity and compared the epithelial and macrophage responses and induction of alveolar bone resorption of the protease active species to that of Porphyromonas gingivalis Only P. gulae exhibited Lys-and Arg-specific proteolytic activity. The genes encoding the gingipains (RgpA/B and Kgp) were identified in the P. gulae strain ATCC 51700 and all publicly available 12 draft genomes of P. gulae strains. P. gulae ATCC 51700 induced levels of alveolar bone resorption in an animal model of periodontitis similar to those in P. gingivalis W50 and exhibited a higher capacity for autoaggregation and binding to oral epithelial cells with induction of apoptosis. Macrophages (RAW 264.7) were found to phagocytose P. gulae ATCC 51700 and the fimbriated P. gingivalis ATCC 33277 at similar levels. In response to P. gulae ATCC 51700, macrophages secreted higher levels of cytokines than those induced by P. gingivalis ATCC 33277 but lower than those induced by P. gingivalis W50, except for the interleukin-6 response. Our results indicate that P. gulae exhibits virulence characteristics similar to those of the human periodontal pathogen P. gingivalis and therefore may play a key role in the development of periodontitis in companion animals.
  • Item
    Thumbnail Image
    Porphyromonas gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors
    Dashper, SG ; Mitchell, HL ; Seers, CA ; Gladman, SL ; Seemann, T ; Bulach, DM ; Chandry, PS ; Cross, KJ ; Cleal, SM ; Reynolds, E (FRONTIERS MEDIA SA, 2017-01-26)
    Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence of P. gingivalis is reported to be strain related and there are currently a number of strain typing schemes based on variation in capsular polysaccharide, the major and minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface proteins. P. gingivalis can exchange chromosomal DNA between strains by natural competence and conjugation. The aim of this study was to determine the genetic variability of P. gingivalis strains sourced from international locations over a 25-year period and to determine if variability in surface virulence factors has a phylogenetic basis. Whole genome sequencing was performed on 13 strains and comparison made to 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic analysis demonstrated a shallow tri-lobed phylogeny. There was a high level of reticulation in the phylogenetic network, demonstrating extensive horizontal gene transfer between the strains. Two highly conserved variants of the catalytic domain of the major virulence factor the Kgp proteinase (KgpcatI and KgpcatII) were found. There were three variants of the fourth Kgp C-terminal cleaved adhesin domain. Specific variants of the cell surface proteins FimA, FimCDE, MfaI, RagAB, Tpr, and PrtT were also identified. The occurrence of all these variants in the P. gingivalis strains formed a mosaic that was not related to the SNP-based phylogeny. In conclusion P. gingivalis uses domain rearrangements and genetic exchange to generate diversity in specific surface virulence factors.