Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    In situ structure and organisation of the type IX secretion system
    Gorasia, DG ; Chreifi, G ; Seers, CA ; Butler, CA ; Heath, JE ; Glew, MD ; McBride, MJ ; Subramanian, P ; Kjær, A ; Jensen, GJ ; Veith, PD ; Reynolds, EC ( 2020-05-14)
    Abstract The Bacteroidetes type IX secretion system (T9SS) consists of at least 19 components that translocate proteins with a type A or type B C-terminal domain (CTD) signal across the outer membrane. The overall organisation and architecture of this system including how the secretion pore (Sov) interacts with the other components is unknown. We used cryo-electron tomography to obtain the first images of the T9SS including PorK/N rings inside intact Porphyromonas gingivalis cells. Using proteomics, we identified a novel complex between Sov, PorV and PorA and showed that Sov interacts with the PorK/N rings via PorW and a new component PGN_1783. A separate complex comprising the outer membrane β-barrel protein PorP, PorE, and the type B CTD protein PG1035 was also identified. Similarly, the Flavobacterium johnsoniae PorP-like protein, SprF was found bound to the major gliding motility adhesin, SprB. Based on these data, we propose cell surface anchorage for type B CTD proteins to PorP-like proteins and a unique model where the PorK/N rings function as an outer membrane barrier to maintain the close proximity of the translocon to the shuttle and attachment complexes inside the rings, ensuring the harmonized secretion and cell surface attachment of the T9SS substrates.
  • Item
    Thumbnail Image
    Quantitative proteomic analysis of the type IX secretion system mutants in Porphyromonas gingivalis
    Gorasia, DG ; Glew, MD ; Veith, PD ; Reynolds, EC (WILEY, 2020-04)
    Porphyromonas gingivalis is an anaerobic, gram-negative human oral pathogen highly associated with chronic periodontitis. P. gingivalis utilizes the type IX secretion system (T9SS) to transport many of its virulence factors including the gingipains to the cell surface. The T9SS is comprised of at least 16 proteins and the involvement of these 16 proteins in the T9SS has been verified by creating gene deletion mutants in P. gingivalis. These T9SS mutants are regularly utilized to understand how these proteins function together to allow the secretion of the T9SS substrates. We performed label-free quantitative proteomic analysis on the T9SS protein mutants in P. gingivalis to understand the relative abundance of each T9SS component in different mutants. The T9SS components were reduced in abundance in the porK, porL, porM, porN, sov and porT mutants, whereas they were increased in the porE, porU, porV, porZ and porQ mutants. Sov and PorW appear to be the lowest in abundance and PorV the highest amongst all the T9SS components in P. gingivalis wild-type strain. These results are consistent with the proposed role of Sov as the translocation pore in the outer membrane and PorV as the shuttle protein that transports the T9SS substrates between sub-complexes. Together, the label-free quantitative proteomics analyses showed that different T9SS mutants have vastly different abundances of the T9SS components. This knowledge will greatly assist in interpreting the phenotype of the T9SS mutants as well as selecting the right mutant for exploring the role of an individual component.
  • Item
    Thumbnail Image
    The Type IX Secretion System: Advances in Structure, Function and Organisation
    Gorasia, DG ; Veith, PD ; Reynolds, EC (MDPI, 2020-08)
    The type IX secretion system (T9SS) is specific to the Bacteroidetes phylum. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilises the T9SS to transport many proteins-including its gingipain virulence factors-across the outer membrane and attach them to the cell surface. Additionally, the T9SS is also required for gliding motility in motile organisms, such as Flavobacterium johnsoniae. At least nineteen proteins have been identified as components of the T9SS, including the three transcription regulators, PorX, PorY and SigP. Although the components are known, the overall organisation and the molecular mechanism of how the T9SS operates is largely unknown. This review focusses on the recent advances made in the structure, function, and organisation of the T9SS machinery to provide further insight into this highly novel secretion system.