School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Australian lineament tectonics: with an emphasis on northwestern Australia
    Elliott, Catherine I. ( 1994-08)
    Australia is transected by a network of systematic continental-scale lineaments that are considered to be zones of concentrated, aligned tectonic activity which have apparent continuity over vast distances. The influence of lineaments on the rock record can be identified in many types of data-sets, and existing data reveals previously undescribed basement influences. Several continental-scale lineaments can be traced offshore with apparent continuity for hundreds to thousands of kilometres, two of which are seen to cross the Tasman Sea in offshore eastern Australia. Geological and chronological evidence demonstrates that many of the lineaments have been zones of reactivation since at least the Early Proterozoic (- 1880 Ma) and that they appear to cross major terrane boundaries. Alternative models for their origin are a) a pre-existing lineament network maintained in an ancient basement underlying the entire continent; b) lateral propagation of crustal-scale structures; c) alignment of genetically unrelated lineaments giving the appearance of continuity. Australian deep-seismic profiles show that continental-scale lineaments are zones of crustal-scale structure which in some cases transect the crust-mantle boundary. Lineaments demonstrate many faulting styles, e.g. listric extensional (G3), planar moderate-angle thrusts (G2 l), and sub-vertical thrusts (G 17). In some cases the structural style varies laterally along the length of the lineament. (For complete abstract open document)
  • Item
    Thumbnail Image
    Mobility of base metals through regolith, Broken Hill, N.S.W.
    Lulofs, Damien ( 1993)
    Regolith profiles over and around zones of Pb-Zn mineralisation were investigated at Maybell and Stirling Vale, located in the Broken Hill region, N.S.W. Metasediments and metavolcanics of the Proterozoic Willyama Supergroup crop out in the study areas, with quartz-gahnite horizons hosting mineralisation. Desert loam soils in the study areas have a transported origin. Locally transported sheetwash deposits overlie a relict aeolian deposit which sits on relatively fresh Proterozoic bedrock. Mineralogy of the regolith profile is consistent with depth and landscape position. Quartz-gahnite horizons form topographic highs in both areas, containing up to 13.5% Zn. Gossanous material is associated with the quartz-gahnite rocks. No base metal containing secondary minerals were present in this weathered material but there were high proportions of iron oxides containing substantial amounts of base metals. Surrounding soils were anomalous in Zn, Cu and their pathfinders Cd and As, which outlines a mobilisation of base metals. Similar anomalies were expressed in stream sediments. Calcrete in the area, contained no anomalous levels of Zn, due to the low solubility of Zn at high pH. The majority of base metals in soils were associated with amorphous iron oxides and silicates (presumably gahnites). These metal bonding sites indicate, dispersion haloes in the regolith are due to a combination of physical and chemical dispersion. In this example of transported regolith profiles in an arid terrain, Zn and Cu are both physically and hydromorphically dispersed from weathering quartz-gahnite horizons.