School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    The geology and geochemistry of the Agnew Intrusion: implications for the petrogenesis of early Huronian mafic igneous rocks in Central Ontario, Canada
    Vogel, Derek Christian ( 1996-07)
    The Early Proterozoic Agnew Intrusion is a well-preserved leucogabbronoritic to gabbronoritic layered intrusion that is a member of the East Bull Lake suite of layered intrusions (ca. 2490-2470 Ma) occurring in central Ontario. These intrusions are related to the development of the Huronian Rift Zone, which may be part of a much more widespread rifting event that involved the Fennoscandian Shield. Structural data suggest that these intrusions have been subjected to ductile deformation and are erosional remnants of one or more sill-like bodies originally emplaced along the contact between Archaean granitic rocks of the Superior Province and an Early Proterozoic Huronian continental flood basalt sequence in the Southern Province.
  • Item
    Thumbnail Image
    The development of a high quality historical temperature data base for Australia
    Torok, Simon James ( 1996)
    A high quality, historical surface air temperature data set is essential for the reliable investigation of climate change and variability. In this study, such a data set has been prepared for Australia by adjusting raw mean annual temperature data for inhomogeneities associated with station relocations, changes in exposure, and other problems. Temperature records from long-term stations were collaborated from the set of all raw data held by the Australian Bureau of Meteorology. These long-term records were extended by combining stations and manually entering previously unused archived temperature measurements. An objective procedure was developed to determine the necessary adjustments, in conjunction with complementary statistical methods and station history documentation. The objective procedure involved creating a reference time series for each long-term station, from the median values at surrounding, well-correlated stations. Time series of annual mean maximum and mean minimum temperatures have been produced for 224 stations, and the adjusted dataset has been made available to the research community. The adjusted data are likely to be more representative of real climatic variations than raw data due to the removal of discontinuities. The adjusted data set has been compared with previously used temperature data sets, and data sets of other parameters. The adjusted data set provides adequate spatial coverage of Australia back to 1910. Additional adjusted data are available prior to this date at many stations. Trends in annual mean maximum, minimum, the mean of the maximum and minimum, and the range between the maximum and minimum, have been calculated at each site. Maximum and minimum temperatures have increased since about 1950, with minimum temperatures increasing faster than maximum temperatures.
  • Item
    Thumbnail Image
    Recent glacier and climate change in the New Zealand Alps
    Ruddell, Andrew Reginald ( 1995-07)
    The sensitivity of glaciers in the Southern Alps of New Zealand is evaluated to identify the nature of recent climate change. Past glaciological observations are compiled and to these are added 4 summer field seasons on the Tasman (including Hochstetter), Dart, Fox and Franz Josef Glaciers. The field data are an important aspect in the calibration and verification of glacier modelling. The detailed studies of these glaciers provides the basis for assessing the glacier and climatic changes over the whole glacierized region. (For complete abstract open document)
  • Item
    Thumbnail Image
    A structural analysis of Wanna, South Australia: the comparative behaviour of Mafic dykes and granite during deformation
    Bales, Thomasin ( 1996)
    Strain localisation that produces varying foliation development, folding, and patterns of boudinage has led to structural features within, and between, the two main lithologies at Wanna, South Australia at amphibolite facies, these lithologies being the megacrystic granite gneiss of the Donington Granitoid Suite, and the Tournefort dykes which cross-cut the gneiss. The structural elements differ between, and within each lithology-for example, the megacrystic granite gneiss has a reasonably pervasive foliation, whereas deformation features in the Tournefort dykes tend to be localised into areas of high strain. Cross-cutting relationships are used to constrain the temporal relationships between structural elements, and the development of the different structural features explained in terms of rheological behaviour of the lithologies. The relative rheological behaviour of the principal lithologies was thus found to vary over space, as well as over time. Geothermometry of mafic assemblages was used to constrain the temperatures at which different structural features developed, which were all found to be in the order of about 720°C and occurring under fluid-rich, upper amphibolite conditions.
  • Item
    Thumbnail Image
    Geochemistry and mineralisation of primary and secondary platinum-group elements in the ultramafic "Alaskan-type" Owendale complex and laterites in the Fifield Region, New South Wales, Australia
    Shi, Bielin ( 1995)
    The Owendale Complex belongs to a family of ultramafic-mafic intrusions that is characterised by a zonal, nonstratiform arrangement of the principal ultramafic units. The ultramafic rocks of the Owendale Complex are virtually identical to many of the Alaskan-type intrusions, however the associated gabbroic rocks (wehrlites) are K-rich and Si-undersaturated, in contrast to the tholeiitic gabbroic rocks of the Alaskan examples. The intrusion history of the Owendale Complex is thought to have involved emplacement of a gabbroic intrusion that was invaded by an ultrabasic magma, possibly while the former was still only partly solidified. Emplacement of both magmas probably occurred during Late Devonian tectonism and deformation synchronous with emplacement and crystallisation is necessary to explain the present non-stratiform arrangement of the rock units. The most obvious linkage factor between the two proposed parent magmas (gabbroic and ultrabasic) of the Owendale suites is their mutual affinity with tholeiitic basalt magmas and the similarities of their products with intrusions of alkalic basalt derivation. This suggests the possibility that the Owendale Complex rocks and those of other tholeiitic intrusions of the regions are comagmatic products of an ancestral magma that may have also produced the widespread assemblage of complexes. Viewed from this perspective, the ultramafic rocks of Owendale Complex would thus represent a very minor product of a period of regional magmatic activity. Most alloys, erlichmanite, cooperite and some grains with exclusion texture of Pt-Os-Ir-Pd-Rh are considered to represent a primary high-temperature paragenesis. Concentration of PGE in pegmatoidal units of dunite-wehrlite is explained by the accumulation of platinum-rich alloys that segregated directly from the melt at an early stage in the evolution of the complex. The high-temperature PGM segregate directly from a silicate melt and were not generated by exsolution from spinels or magmatic sulphides. These suggest that fS2 was generally low (subordinate sulphide formation) and, after some influence at the beginning, has given way to rising fO2 (chromite, olivine and Pt-Fe-Cu-Ni alloys formation). After lithification, the ultramafic rocks become subject to "reducing" conditions, i.e., conditions of lower O2 and S2 activities. Ni-Fe alloys, native Fe and Bi formed in cracks which filled the serpentine matrixes. The former PGM (erlichmanite, cooperite and Pt-Fe alloys) were exposed to the reducing conditions via cracks were desulphurated to form porous cooperite with Pt-Fe alloys and multiphase textural Os-Ir-Ni, Pt-Ir aggregates. It is plausible that the veinlets and aggregates of unnamed Rh-Sb-S, (Pt, Ir)2(Fc, Cu)3(S, Sb, AS)3 in the dunites may also have been formed by reduction of Ni-rich sulphides and erlichmanite, Pt-Fe alloys or cooperite. Late PGM are dominated by sperrylite-geversite solid solution resulting from the reaction of early PGM with a fluid phase. A hydrothermal origin is also indicated for native Fe, native Bi and awaruite (NiFe) and the base-metal sulphides (pentlandite, chalcopyrite, sphalerite, arsenopyrite, pyrite, pyrrhotite, and some Ni-Co-Fe sulfide). The cause of the reducing conditions may have been related to H2 production accompanying hydrous alteration of the dunites and clinopyroxenites. The laterites overlying the ultramafic complexes in the Fifield region are exceptionally well-developed and well-preserved weathering profiles. Field, textural and geochemical data all support a chemical weathering origin for the profiles and compatible with meteoric and ground water origins. Meteoric water with intermediate Eh and pH and negligible dissolved species sinks into the laterite where these parameters are modified. The Eh rises and pH decreases to the conditions typical of lateritic soils and the concentration of dissolved species increases. In this state the water is able to take PGE and Au into solution from a finely disseminated form in the bedrock as a part of the process of lateritisation. When the soil solution transports the PGE and Au towards a transitional interface must exist between the ferruginous and saprolite zones with lower Eh, neutral pH and lower concentration of dissolved salts. At this transitional region, deposition of the PGE and Au occurred. The presence of magnetic Pt-Fe-Cu-Ni alloys suggests that hydrothermal solutions play a later role in the Fifield region, and the alloys have grown in situ in a lateritic soil by a process involving laterite water solution in the high Eh, low pH conditions prevalent in such soil, followed by deposition when the conditions become less extreme. Some examples of the Pt-Fe alloys from such an environment become frequently strongly magnetic with larger size. It is assumed that the temperature of the hydrothermal solution is in the range of 300° - 500° C (Bowles, 1990). PGE mineralisation in the primary rocks and laterite in this region has demonstrated a good example of multi-stage process mineralisation including primary high temperature magmatic formation; low temperature postmagmatic hydrothermal alteration and residual lateritic enrichment.
  • Item
    Thumbnail Image
    Geology of the lookout area, Eyre Peninsula, South Australia
    Annear, Joshua A. ( 1996)
    The Lookout Area, southern Eyre Peninsula, South Australia forms part of the Lincoln Batholith with outcropping Donington Granitoid Suite units of Palaeo-Proterozoic age (l840-1800Ma) and both syn-plutonic and intrusive mafic dykes. The area was surveyed and mapped at 1:500 to produce a detailed geological map including the form surface trend of structural features. The units, incorporating felsic, intermediate and mafic gneisses intruded by the mafic dyke sequences, preserve high strain mylonitic deformational features with well developed fabrics in the felsic units. The Mafic dykes are boudinaged and display asymmetries attributed to antithetic back-rotation due to extensional shear. Kinematic indicators including shear band formation, parasitic folding and strain shadows suggest a kinematic history of initial sinistral deformation post-dated by dextral west-up oblique shear associated with the formation of the principal foliation. This is in turn post-dated by local sinistral shearing. The strain associated with the deformation can be measured by use of porphyroclast shape and distribution. These results indicate that the strain is locally variable, from constrictional to flattening, but generally constrictional with an extensional ratio of approximately 6:1. The metamorphic conditions preserved by the mineral assemblages analysed through the average PT method using THERMOCALC are; 700-850°C and 5.8-6.8 kbar. This mineral assemblage indicates metamorphism in the area has achieved upper-arnphibolite to lower granulite facies metamorphism at some stage in the PT history of the area.
  • Item
    Thumbnail Image
    Occurrence of nitrate in soil and groundwater in the Corangamite area, Western Victoria
    Bayne, Phillip James M. ( 1996)
    Soil and groundwater samples taken from two areas of different land use in the Corangamite Region, 200 km west of Melbourne, were analysed for nitrate and ammonium, and in some cases chloride. Both sites are located on the Later Newer Volcanics 'stone rises', and groundwater was sampled from nested bores which intersect the shallow unconfined aquifer and deeper semi-confined aquifer at both sites. The Carpendeit site is an area of native Eucalypt forest, and the Purrumbete North site is a pasture for grazing dairy cows. Low concentrations of nitrate (< 1 mgN/L) in groundwater at Carpendeit correspond to low soil nitrate concentrations (< 3 µgN/cm3 ). Higher groundwater nitrate concentrations occurred in the shallow unconfined aquifer at Purrumbete North, (up to 3 mgN/L), but not in the lower semi-confined aquifer, and corresponds to higher nitrate concentrations in soil (1 to 60 µgN/cm3 ). Elevated nitrate concentrations also occurred in groundwater discharge at McVeans Springs, in the range 2.61 to 4.72 mgN/L, and at Ettrick Springs in the range 8.08 to 16.07 mgN/L, greater than the limit of 10 mgN/L for drinking water specified in ANZECC water quality guidelines. Nitrate in soil under the pasture is probably derived primarily from the activity of nitrogen fixing bacteria associated with subterranean clover introduced to the pasture. Soil nitrate distributions suggest intense return of nitrogen in dung and urea occurs at 'camps' locations on the pasture, where cows tend to gather for shelter. Transport of nitrogen to shallow groundwater is stimulated by cracks and channels in the basalt clay soils. Local groundwater flow includes interaction with the many lakes and temporary ponds 'which form in surface depressions at times of high rainfall. The ponds probably serve as an effective nitrate supply in recharge to the shallow aquifer.
  • Item
    Thumbnail Image
    Transport, attenuation, and degradation of organic chemicals in a basaltic aquifer system near Melbourne, Australia
    Finegan, James Michael ( 1996)
    Groundwater in the Pliocene to Pleistocene fractured and jointed Newer Volcanics basaltic aquifer system beneath Melbourne's industrialised western suburbs is extensively contaminated by a wide variety of organic and inorganic compounds. Groundwater in Tertiary sediments underlying the Newer Volcanics is probably also contaminated by the same sources. The main objectives of this research were 1) to assess the types, concentrations, and distribution of contaminants in the Newer Volcanics aquifer system in Melbourne's western suburbs and at a selected contaminated site and 2) to determine contaminant transport, attenuation, and degradation processes affecting organic contaminants in this aquifer system. Contaminants detected in the Newer Volcanics aquifer system during this research include phenols, volatile organic compounds, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, metals, and inorganic anions. The groundwater flow system in the study area comprises a single heterogeneous and anisotropic unconfined aquifer, and includes both the Newer Volcanics and underlying sedimentary units (the Brighton Group and the Werribee Formation), although hydraulic connection of these units to the volcanics is irregular. Groundwater flow in the Newer Volcanics is through vesicular and/or scoriaceous lava flow tops and bottoms, in intercalated fluvial deposits, and through the fractured and jointed lava flows. Locally (scale of less than I km square), the basaltic aquifer system may consist of hydraulically separated shallow and deep aquifer zones that are connected on a larger scale. The deep aquifer zones may be semi-confined to confined. Groundwater in the study area is recharged via throughflow from upgradient and infiltration of rainfall. Discharge from the Newer Volcanics in the study area is primarily to underlying sedimentary formations, but also to surface water features and directly to Port Phillip Bay. Several mechanisms which reduce contaminant concentrations are possible in the Newer Volcanics aquifer system. These include volatilisation, dispersion and diffusion, transient storage, matrix diffusion, sorption, hydrolysis, and biodegradation. However, the nature of porosity in the Newer Volcanics may significantly extend the lifetime of contaminant plumes via the processes of transient storage and matrix diffusion. The primary mechanisms of attenuation and degradation of organic contaminants in the Newer Volcanics aquifer system are probably biodegradation, matrix diffusion, sorption, and dispersion (for non-reactive contaminants) in order of decreasing effect. Biodegradation at the water table and discharge areas will also be significant because of atmospheric contact and increased dissolved oxygen concentrations. Because of the relative lack of organic carbon in the basaltic aquifer system, sorption will occur mainly to mineral surfaces in clay-rich zones and within the rock matrix (concurrent with matrix diffusion). In some cases, relatively undiluted contaminants may be transported along preferred flow paths to discharge locations where they may pose a potential threat to the environment prior to degradation or attenuation. It was found, at least with phenols and volatile organic compounds in groundwater at a study site, that contaminants are degraded and/or attenuated rapidly, probably via biodegradation, matrix diffusion, and sorption. Biodegradation testing of groundwater at this study site confirmed the existence of microorganisms in the aquifer system capable of aerobic degradation; indirect evidence may indicate the presence of anaerobes.
  • Item
    Thumbnail Image
    Late Cainozoic climatic and eustatic record from the Loxton-Parilla Sands, Murray Basin, Southeastern Australia
    Kotsonis, Andrew ( 1995)
    A series of ancient shoreline ridges in the western Murray Basin of southeastern Australia preserve a detailed legacy of Pliocene marine retreat. The 157 subdued NNW trending coastal ridges of the Loxton-Parilla Sands, mapped using conventional techniques and night-time thermal imagery from the NOAA and the ERS-l satellites, extend in a parallel series from 400 km inland to the present coastline, and provide a virtual contour plan of the Pliocene landscape. Coastal ridges of the Loxton-Parilla Sands range in age from 6:6 Ma in the east, to 3.5 Ma towards the west, where they are tectonically deformed by the uplift of the Pinnaroo Block. The deposition of the Loxton-Parilla Sands at 6.6 Ma is correlated with high global sea levels, with the distribution of the sands suggesting deposition at a topographic level comparable to an ice-free earth (i.e. complete deglaciation of the polar regions). Coastal ridges consist of beach-barrier and near-shore sediments deposited in conditions of fluctuating sea levels. The absence of aeolian sediments within the ridges implies a significantly weaker wind-wave regime and/or permanent vegetation cover existed throughout the Pliocene. Eustatic oscillations recognized within the shoreline sequence correlate well with glacio-eustatic changes modulated by the axial precession of the earth with a periodicity near 20, 000 years. Following retreat of the sea, the Loxton-Parilla Sands were subject to deep weathering, with the resultant profile termed the Karoonda Regolith. Following cessation of coastal deposition the Karoonda Regolith developed diachronously, with the oldest pedogenic exposures in the east to the youngest towards the west. Ferric and silicic weathering profiles developed in late Miocene to Plio-Pleistocene times. Pedogenic silcretes formed by downward movement of acidic soil waters with saturation and deposition at the soilwater-groundwater interface under alternating wet and dry conditions. High water tables probably ensured accumulation of silica in the near surface environment. By the Mid Pliocene (3.5 Ma) weathering changed from predominantly silica to iron mobilization with development of ferricrete profiles. Late Pleistocene (0.7-0.4 Ma) ferricrete development ceased when arid climates developed as represented by calcareous soils across the basin. Addition of calcareous parna on the Karoonda Regolith buffered soil water pHs, and switched off ferricrete development. Extensive opaline silica dissolution under alkaline conditions resulted in the development of karstic-type solution pipes that were infilled with pisoliths and clasts of sandstone. Lowered groundwater tables probably contributed to the removal of silica from the near-surface permitting transfer to deep aquifers within the Loxton-Parilla Sands. The change from ferricrete to calcrete formation marks the onset of arid climates in Australia. Correlatives can be drawn between this continental record of sea level changes with those of the deep sea oxygen isotope curves which reflect Milankovitch-type changes in the ice budget of the world.