School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Geology and tectonothermal history of The Fishery Bay Region, Eyre Peninsula, South Australia
    Elliott, Andrew R. ( 1998)
    The Fishery Bay region, southern Eyre Peninsula, South Australia, consists of Archaean charnockitic and paragneissic sequences of the Sleaford Complex intruded by Palaeoproterozoic granitoids and two generations of mafic dykes. These rocks preserve the deformational and metamorphic effects of the Kimban Orogeny and the later Wartakan Event. Within the Fishery Bay area, five separate ductile deformation events (D1-D5) are recognised, the dominant of which (D2-D3) are associated with granulite facies metamorphism. The effects of the D3 event are pervasive throughout the Fishery Bay region, with D1 and D2 preserved only in regions of low-D3 strain. The overprinting nature or D3 is recognised in the reorientation of D2 structures. The dominant response of the area to D3 strain is a series of westerly-dipping dextral oblique reverse shears with west block-up movement. Much of the strain is localised within the paragneisses and along the margins of mafic dykes recognised in the development of a NNE-trending D3 high-strain zone termed the Cape Wiles Shear Zone. D3 observations from the Fishery Bay region correlate well with previous studies conducted on southern Eyre Peninsula which lead to the inference that D3 west block-up exhumation is responsible for the positive pressure gradient that exists from west to east across the Kalinjala Shear Zone. The pressure-temperature conditions preserved in the mineral assemblages of the paragneiss units and mafic dykes record two granulite facies metamorphic events, M2 and M3. Mineral assemblages associated with M2 and M3 are similar and passage from M2 to M3 did not result in reaction textures which indicates the proximity of the thermal conditions of these two metamorphic events. M2 corresponds to the second deformational event (D2) where peak metamorphic conditions reached pressures of 8.6±3.2 kbar at 750-900°C, The second thermobaric event correlates with the third deformation event (D3) and a metamorphic peak of 4.1±1.9 kbar at 750-850°C. The decompression of the Fishery Bay region during D3/M3 is synchronous with crustal thickening of the terrain east of the area.
  • Item
    Thumbnail Image
    Deformation and the thermobaric history of the eastern coast of Williams Island
    Marks, Bianca ( 1997)
    Williams Island is located off the southern coast of the Eyre Peninsula of South Australia where the Palaeoproterozoic rocks of the Lincoln Batholith intrude a portion of an Archaean basement complex. The structures of the eastern coast of Williams Island are controlled by the rheological contrast between the mafic dykes and the felsic granite gneisses that comprise the batholith. Planes of rheological weakness exist at the dyke margins along which strain is localised. The plane of failure and the kinematics along it depends upon the orientation of the dyke with respect to the stress field. Displacements at cross-cutting dyke margins indicates the occurrence of three significant deformation events, D 1, D2 and D3. By comparison, the D1 is localised to a region of outcropping Jussieu Dykes, the D2 is pervasive and the D3 is confined to the discrete Northern and Southern Shear Zones. Associated with the latter two deformations is an increase in temperature and strain rate which controls the relative strength of the metabasic and the granite gneiss rocks. Brittle extensional structures, such as boudinage, form when the mafic dykes behave in a more competent manner relative to the host, whereas ductile extensional features, like pinch and swell, infer a greater homogeneity between the rock types. The rheological contrast is inverted with a preferential increase in strain resulting in granite boudinage. The D2 fabrics arc predominantly defined by a granulite two-pyroxene assemblage and the structural elements of D3 are characterised by minerals associated with amphibolisation. Average pressure calculations of representative assemblages give 7 ± 1 kbar for M2/D2 and 12 ± 2 kbar for M3/D3, which suggests crustal thickening over D2 - D3 time. Exhumation of the crustal block therefore occurred after peak D3.
  • Item
    Thumbnail Image
    A structural analysis of Wanna, South Australia: the comparative behaviour of Mafic dykes and granite during deformation
    Bales, Thomasin ( 1996)
    Strain localisation that produces varying foliation development, folding, and patterns of boudinage has led to structural features within, and between, the two main lithologies at Wanna, South Australia at amphibolite facies, these lithologies being the megacrystic granite gneiss of the Donington Granitoid Suite, and the Tournefort dykes which cross-cut the gneiss. The structural elements differ between, and within each lithology-for example, the megacrystic granite gneiss has a reasonably pervasive foliation, whereas deformation features in the Tournefort dykes tend to be localised into areas of high strain. Cross-cutting relationships are used to constrain the temporal relationships between structural elements, and the development of the different structural features explained in terms of rheological behaviour of the lithologies. The relative rheological behaviour of the principal lithologies was thus found to vary over space, as well as over time. Geothermometry of mafic assemblages was used to constrain the temperatures at which different structural features developed, which were all found to be in the order of about 720°C and occurring under fluid-rich, upper amphibolite conditions.
  • Item
    Thumbnail Image
    The geochemistry and petrology of the Enterprise dolerite, Ora Banda, Western Australia
    Gregory, Melissa Joy ( 1998)
    The Enterprise Dolerite was emplaced as an intrusive tholeiitic sill within the Ora Banda Sequence at Ora Banda in the Eastern Goldfields Province of the Yilgarn Craton. The Enterprise Dolerite is now a metamorphic body with modifications in both the mineralogy and geochemistry of the rocks. Careful analysis of petrographic features integrated with geochemical trends have made it possible to interpret the original igneous characteristics of the sill. It is proposed here that the order of crystallisation in the Enterprise Dolerite is plagioclaseolivine- clinopyroxene-quartz. Furthermore, plagioclase and olivine accumulated through crystal settling before a switch to in-situ crystallisation in the remainder of the sill. The bulk chemistry of the Enterprise Dolerite is equivalent to that of the Mt Ellis Sill which occurs at the same stratigraphic position, and it is proposed here that they are continuations of the same intrusive body. This intrusive body is related to the other mafic members of the Ora Banda Sequence, with all members forming a differentiation trend and in which the Big Dick Basalt represents a primary mantle magma. The Enterprise Dolerite/Mt Ellis Sill has evolved in composition along the trend from this primary magma. Finally, the addition and removal of phases has produced a chemically evolving system with differentiation progressing to maxima in silica and iron concentrations which provide very good conditions tor gold deposition. This study proposes that both the Enterprise Dolerite and the Mt Ellis Sill be examined for future potential gold mineralisation.
  • Item
    Thumbnail Image
    Garnet-bearing metabasic rocks at Mount Joel: an investigation into distribution, petrology and equilibrium thermodynamic modelling
    Farrell, Nicole ( 1998)
    Garnet-bearing metabasic rocks at Mount Joel, Yilgarn craton, Western Australia, have been studied to determine their distribution, petrography and mineral equilibria. At depth, the orientation of garnet-bearing rocks is approximately 340°N, dipping 60°-70° to the east and mimics that of chloritoid schist and gold mineralisation. Three mineral assemblages at Mount Joel can contain garnet, including: chloritoid-chlorite-plagioclase-quartz-garnet; chlorite-plagioclase-quartz-garnet; chlorite-hornblende-plagioclase-quartz-garnet. Garnets are manganese-rich, composed of up to 23% spessartine. Bulk rock analysis suggests a correlation between manganese enrichment and the appearance of garnet in mineral assemblages. The chemical relationships are consistent with the garnet-bearing rocks being formed from altered basaltic rocks. Thermodynamic calculations have been undertaken using an internally consistent thermodynamic dataset (Powell and Holland, 1990) and THERMOCALC v2.5. Phase diagrams, including Pressure-Temperature (P-T) Projections, P-T Pseudosections and Temperature-Composition (T-X) Pseudosections, have been used to model the mineral equilibria for FeO-MgO-Al2O3-SiO2-H2O (FMASH), Mn-FeO-MgO-Al2O3-SiO2-H2O (MnFMASH)and CaO-Na2O-MnO-FeO-MgO-Al203-Sí02-H2O (CaNaMnFMASH) systems. Upon addition of manganese to a garnet-free system (FMASH), garnet becomes introduced as a new stable phase. As a result, garnet can be present in low pressure and temperature metabasic rocks, such as those at Mount Joel. The variety of mineral assemblages in garnet-bearing rocks at Mount Joel reflects a range in mineral chemistry of the metabasic rocks, possibly due to a range of alteration processes affecting these rocks. The pressure and temperature conditions of formation of garnet-bearing metabasic rocks at Mount Joel have been constrained to about 510 °C at about 3 kbars.
  • Item
    Thumbnail Image
    Proterozoic strain localisation during the Kimban Orogeny: a structural analysis of Williams Island, Eyre Peninsula, South Australia
    Harrowfield, Mathew ( 1997)
    Strain localisation and shear zone development is spatially controlled by rheological inhomogeneity of the crust. Shear zone development is found to be localised by the distribution of mafic dykes within the deformed Palaeoproterozoic granitoids and orthogneisses of the Lincoln Batholith, outcropping on Williams Island, southern Eyre Peninsula, South Australia. These granitoids have experienced regional upper amphibolite metamorphism, episodic ductile deformation and exhumation of the Lincoln Batholith during the Kimban Orogeny (c. 1850-1700 Ma). In the area mapped, crustal shortening has been accommodated by dextral strike-slip transport along the dyke-hosted Williams Shear Zone, and by the transferring of strain into oblique south-up thrusts. Strain analysis of granite orthogneiss was undertaken using both finite strain methods and by examination of strain-induced orthogneiss fabric development. It was found that large strains have been localised within mafic dykes, whilst comparatively little strain has been accommodated within the host rock. Although finite strain estimation met with limited success, results demonstrate a partitioning of flattening and constrictional strain between granite gneisses and the mafic dykes and an asymmetry of strain intensity across dyke-hosted shear zones. Temporal evolution of the granite/dyke rheological contrast results in a progression of boudinage structures which may be used to chart the variation or temperature and strain rate during metamorphism and deformation. Such evolution is mimiced within orthogneiss fabric by changes in the quartz/feldspar rheology contrast and grain-scale microstructure. Placing the deformation observed on Williams Island into a regional perspective has proven difficult due to the limited scale of mapping and an incoherence of kinematic data from previous work within the batholith. It seems plausible that the strike-slip movement recorded on the Williams Shear Zone occurred in response to regional exhumation of the Lincoln Batholith during the Kimban Orogeny.
  • Item
    Thumbnail Image
    Structural and metamorphic constraints on Kimban Orogenesis from southern Eyre Peninsula, South Australia
    Berman, David ( 1997)
    Archaean to Mesoproterozoic lithologies at Whalers Way on southern Eyre Peninsula present a unique cross section of episodic deformation and magmatism within the Gawler Craton. D2 and D3 at Whalers Way were coaxial phases of progressive fold-thrust deformation. Progressive D2 deformation resulted in the formation of east dipping shear zones along which nappes with NW directed vergence were stacked coeval with the Kimban metamorphic peak. Domains of upright and recumbent D3 structure can be identified based on the orientation of S3. Domains of recumbent D3 structure retain transitions from open folds not associated with an axial planar foliation through to recumbent antiforms bound by shallow west dipping shear zones. S3 within domains of recumbent structure is non-pervasive and well developed only within D3 shear zones. In contrast a pervasive S3 developed within domains of upright D3 structure. Systematic variation in the pitch of L3 imply vertical strain was partitioned into domains of upright structure. Tectonic foliations have been used to establish linkages between the structural and metamorphic histories of Whalers Way. Assemblages that define S2 (M2) equilibrated at 6-7 kbar and 800-820°C (M2) whereas S3 (M3) assemblages equilibrated at 3-5 kbar and 700°C (M3). M2 and M3 peak temperatures were in excess of those which could result solely from thermal relaxation of an overthickened crust. Transient Kimban heat input is consistent with rapid post-D3 cooling implied by K-Ar geochronology. D2 and D3 were the earlier and latter phases of a single episode of transpressional deformation in which the change in kinematics from NW to NE directed transport was associated with a 90° swing in the orientation of the subhorizontal principal compressive stresses. The consistency of kinematic data and the temporal sequence of magmatism relative to deformation across the Eyre Peninsula suggest syn-D3 decompression at Whalers Way reflects regional scale processes. Because the terrain is inferred to have cooled rapidly, the presence of near isothermal decompression textures implies exhumation must also have been rapid and suggests significantly non-plane strain flow within steeply oriented crustal scale shear zones is an efficient mechanism for exhumation of the mid to lower crust.
  • Item
    Thumbnail Image
    Geology of the lookout area, Eyre Peninsula, South Australia
    Annear, Joshua A. ( 1996)
    The Lookout Area, southern Eyre Peninsula, South Australia forms part of the Lincoln Batholith with outcropping Donington Granitoid Suite units of Palaeo-Proterozoic age (l840-1800Ma) and both syn-plutonic and intrusive mafic dykes. The area was surveyed and mapped at 1:500 to produce a detailed geological map including the form surface trend of structural features. The units, incorporating felsic, intermediate and mafic gneisses intruded by the mafic dyke sequences, preserve high strain mylonitic deformational features with well developed fabrics in the felsic units. The Mafic dykes are boudinaged and display asymmetries attributed to antithetic back-rotation due to extensional shear. Kinematic indicators including shear band formation, parasitic folding and strain shadows suggest a kinematic history of initial sinistral deformation post-dated by dextral west-up oblique shear associated with the formation of the principal foliation. This is in turn post-dated by local sinistral shearing. The strain associated with the deformation can be measured by use of porphyroclast shape and distribution. These results indicate that the strain is locally variable, from constrictional to flattening, but generally constrictional with an extensional ratio of approximately 6:1. The metamorphic conditions preserved by the mineral assemblages analysed through the average PT method using THERMOCALC are; 700-850°C and 5.8-6.8 kbar. This mineral assemblage indicates metamorphism in the area has achieved upper-arnphibolite to lower granulite facies metamorphism at some stage in the PT history of the area.