School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Aerosol contributions to speleothem geochemistry
    Dredge, Jonathan ( 2014)
    There is developing interest in cave aerosols due to the increasing awareness of their impacts on the cave environment and speleothems. This study presents the first multidisciplinary investigation into cave aerosols and their potential contribution to speleothem geochemistry. Aerosols are shown to be sourced from a variety of external emission processes, and transported into cave networks. Both natural (marine sea-spray, terrestrial dust) and anthropogenic (e.g. vehicle emissions) aerosol emissions are detected throughout caves. Internal cave aerosol production by human disruption has also been shown to be of importance in caves open to the public. Aerosols produced from floor sediment suspension and release from clothing causes short term high amplitude aerosol suspension events. Cave aerosol transport, distribution and deposition are highly variable depending on cave situation. Cave morphology, ventilation, and environmental conditions will influence how aerosols are distributed through cave networks. Aerosol deposition monitoring in Obir Cave, Austria has shown the significance of cave chamber size in aerosol transport, with large open chambers presenting higher levels of deposition. Modern monitoring of suspended aerosol concentrations, CO2 and temperature in Gough’s Cave, Cheddar Gorge have presented a strong relationship with cave ventilation processes. Temporal variations of aerosol levels have demonstrated the ability of aerosol monitoring to record seasonal ventilation shifts, beyond anthropogenic influences. Aerosol minima (based on 24 hours) provide a representation of natural aerosol baseline conditions without diurnal anthropogenic influences. Aerosols have shown a quicker recovery to natural background levels when compared to CO2 and T, making aerosols a sensitive and effective monitoring tool. When used in combination with more established monitoring methods, suspended aerosol monitoring is a beneficial addition to cave environmental studies. Theoretical modelling and calculations based on modern aerosol monitoring have established that aerosol contributions are highly variable. In some instances, modern aerosol supply is sufficient to account for speleothem geochemistry concentrations entirely. Aerosol contributions are of greatest significance under slow growth or hiatus scenarios and high aerosol deposition scenarios. Geochemical and stratigraphical analysis of a flowstone core from Gibraltar has highlighted the importance of hiatus events for future aerosol studies. Hiatus events provide a unique opportunity to investigate the type and amount of aerosol deposition and accumulation. Marine aerosol contributions have been quantified in the Gibraltar flowstone core and account for 18.5% of speleothem Sr. Sr isotopic analysis has confirmed the significance of marine aerosol contributions. Flowstone analysis has also demonstrated the ability of speleothems to record shifts in the supply of highly radiogenic terrestrial dust. Bio-aerosol deposits and bacterial colonisation have been identified as a potential source of trace element bioaccumulation and flowstone coloration in Yarrangobilly Caves, Australia. Bio-aerosols have shown to be deposited throughout cave networks. Inorganic aerosol deposition may provide a nutrient supply to cave surfaces allowing for, and sustaining microbial colonisation. 
  • Item
    Thumbnail Image
    Stratigraphy and sedimentology of Cryogenian carbonates, Flinders Ranges, South Australia
    Fromhold, Thomas Alexander ( 2011)
    The Adelaide Geosyncline of South Australia contains a Neoproterozoic-aged sedimentary succession consisting of a complex accumulation of sedimentary formations and units recording a diverse and unique depositional record. A detailed stratigraphic and sedimentological investigation of the interglacial period within the Cryogenian-aged Umberatana Group of the Northern and Central Flinders Ranges reveals a complex array of sedimentary successions lying between the Sturtian and Marinoan glacial deposits. In the Northern Flinders Ranges a major unconformity separates the Sturtian and Marinoan-aged sedimentary successions in the area. This forms a sub-aerial erosion surface with terrestrial and marginal marine sediments directly above the Angepena and Balcanoona formations in their respective localities. This exposure surface is here correlated with the previously documented submarine unconformity between the Yankaninna Formation and the underlying deep marine Tapley Hill Formation. This erosional event provides a chronostratigraphic marker horizon that coincides approximately with the previously defined Sturtian-Marinoan time series boundary in the Northern Flinders Ranges. These stratigraphic relationships also constrain lateral facies relationships between the Oodnaminta Reef Complex (Balcanoona Formation) and the Angepena Formation. Similarly, the shallow water Weetootla Dolomite is correlated with the deeper water carbonates of the Yankaninna Formation. In the Northern Flinders Ranges the Angepena Formation occurs as a marginal marine red-bed succession consisting of supratidal mudstones which are interbedded with subtidal and intertidal carbonates. The Angepena Formation is interpreted as a coastal mudflat succession that formed as a shoreward, laterally equivalent facies of the extensive carbonate platforms (reefs) of the Balcanoona Formation. Sedimentological and geochemical investigation of the Angepena Formation reveal that the unit contains a diverse accumulation of shallow marine carbonates including ooidal sands, tepee buckled algal mats, intraformational breccia (palaeo-caliche) and fenestral-bearing microbial deposits. The stratigraphic and sedimentological relationship within the interglacial successions of the Umberatana Group of the Northern Flinders Ranges are found to extend well over a hundred kilometres southwards into regions of the Central Flinders Ranges. The post-glacial Sturtian-aged Tapley Hill Formation records a near-identical depositional record to the Tapley Hill Formation of the Northern Flinders Ranges. In the Central regions, the Tapley Hill Formation is overlain by deep-marine carbonates and calcareous shales of the Wockerawirra Dolomite and Sunderland Formations respectively. The base of the Wockerawirra Dolomite is defined by an erosional surface, which is directly correlated to the unconformity found overlying the Tapley Hill Formation in the Northern Flinders Ranges (Sturtian-Marinoan series boundary). This stratigraphic relationship indicates the Wockerawirra Dolomite and Sunderland Formations of the Central Flinders Ranges are direct correlatives of the Yankaninna Formation of the Northern Flinders Ranges. The regionally widespread carbonate platform complexes of the Balcanoona Formation in the Northern Flinders Ranges preserve a unique history of the depositional record within the middle Umberatana Group of the Adelaide Geosyncline. Cessation of reef development coincides with a major regression event situated immediately below the Sturtian-Marinoan boundary. The regional consistency of the stratigraphic features found at the Sturtian-Marinoan boundary (i.e. unconformities) suggests that regional scale mechanisms, such as glacio-eustasy, were probably active during this otherwise ‘interglacial’ succession of the Cryogenian-aged Umberatana Group.