School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    The structural evolution, tectonics and hydrocarbons of the offshore Otway Basin, SE Australia
    PALMOWSKI, DANIEL BRUNO ( 2003)
    The offshore Otway Basin is part of Australia's passive southern margin, in which two separate rift-phases between the Tithonian? and Maastrichtian formed numerous depocentres. The research presented has analyzed and described the structural styles in the offshore Otway Basin and constructed a model of the basin's evolution since the Late Jurassic. The Otway Basin has been divided into four structural zones from north to south. Zone I comprises the onshore area and most of the shelf along the margin. Deep halfgraben developed during the first rift phase with characteristic horst and graben in Palaeozoic basement. To the south, zone I is bound by the Hinge Zone. Structural zone II covers the entire deepwater part of the Otway margin, characterized by a very thick Late Cretaceous section with pervasive Turonian faulting in the east and saucer-shaped depocentres in the west. Large halfgraben controlled deposition of the post-Turonian sedimentation in the eastern Otway Basin. Negative flower structures document strike-slip faulting. Strongly thinned lower laminated continental crust underlies this zone, limited to the south by the Outer Margin Highs. Domino faulting formed halfgraben and less commonly graben in Structural Zone III, the Outer Margin Highs. The base of the Outer Margin High sediments represents a regional decollement surface and domino faulting occurred along a second-generation decollement. Structural zone III is limited to the south by the continent-ocean-boundary with oceanic crust in structural zone IV. In the Shipwreck Trough, halfgraben died out against an accommodation zone which developed into the Shipwreck Fault with strike-slip offset .The regional stress regime indicate sinistral strike-slip movement along this fault zone. In the southwest Shipwreck Trough, four Turonian to early Coniacian syn-rift phases can be distinguished formed through footwall collapse to the north of the Hinge Zone. Differences in the amount of extension in the basin are accommodated along strike-slip faults such as the Shipwreck Fault. Sedimentation rates between 89 and 83 Ma increased whilst extension rates declined. Since approximately 83Ma sedimentation rates declined exponentially in phase with extension rates. Regionally, rapid Turonian extension formed a wide graben system between Antarctica and Australia. With the serpentinization of exhumed mantle peridotite in the Outer Margin Highs during the Coniacian in the east and Turonian in the west, the crustal deformation mechanism changed from mainly pure shear to simple shear along the newly established decollement. Fast spreading since the Mid Eocene caused gravitational collapse of the margin. Changes in heat flow possibly correlate with a change in deformation style in the continental crust. Parallel developments of sedimentation-rate and extension-rate suggest that most of the subsidence was structurally related. The Shipwreck Trough hydrocarbon fairway probably continues south into the Sorrell Basin. Possible stagnant conditions in deeper water offshore across the Hinge Zone might have enhanced the organic content of the Belfast Mudstone creating potential oil source rocks. Deepwater lntra-Paaratte reservoirs are not proven, but the alternating reflective to non-reflective seismic facies might indicate interbedded sands and shales. Large rollover anticlines would make excellent traps in the deepwater Otway Basin.
  • Item
    Thumbnail Image
    The major, trace and precious metal geochemistry of some Permian layered intrusions, Central Queensland
    Reeves, Shane John ( 1990)
    The Bucknalla Complex, previously known as the Westwood Layered Intrusion, is a small, 10 km2, layered, tholeiitic, mafic-ultramafic intrusion located 50 km southwest of Rockhampton that was emplaced into an active continental margin environment in the Permian. The complex comprises clinopyroxenites, olivine clinopyroxenites, wehrlites, troctolites, hornblende gabbros, gabbros, anorthosites, leucogabbros and dolerites. It is a saucer-shaped lopolith (2200 m X 6 km at maximum stratigraphic intersection) which intruded Lower Permian spilitic pillow lavas, cherts and tuffs of the Rookwood Volcanics during the Lower Permian. It has subsequently been tilted vertically and in a northeast direction. It consists of over 15 laterally discontinuous igneous units ranging in thickness from 1-50 m. Plagioclase is a cumulus phase throughout the intrusion while orthopyroxene is absent until the very uppermost levels of the stratigraphy. The chromium composition of magnetite analysed by electron microprobe has been found to mimic whole-rock mg# and is a good measure of the degree of fractionation of the rocks. Electron microprobe analyses of samples from two traverses perpendicular to layering reveal cryptic variation in the primary phases (olivine: Fo69-83; plagioclase: An54-97; clinopyroxene mg#: Cpx67-87) which is not a simple function of stratigraphic height. Background PPGE (Pd & Pt), Au, S and Cu values for the intrusion are high while IPGE (Ir & Ru) are low. A total of 120 analyses has produced the following range of values: Pd, 2-70 ppb; Pt, 3-40 ppb; Au, 1-20 ppb; Ir, 0.01-0.07 ppb; Ru, 0.2-0.6 ppb; S, 150-400 ppm and Cu, 40-600 ppm. Platinum, Pd and Au display good correlations with Cu, particularly at more elevated levels, while Ir and Ru are better correlated with whole rock Ni and Cr. Palladium, Pt, Au, Cu & S are elevated in rocks which have intermediate whole-rock mg# (47-60). These trends suggest that the PGE are, to some extent, controlled by fractionation and that the high melting point PGEs (Ir, Ru) were precipitated with the early crystallising phases, such as olivine and clinopyroxene, whereas Pt, Pd and Au were removed from the magma by sulphides. Mantle normalized metal plots for both the mineralized and unmineralized rocks of the Bucknalla Complex display similar trends. Both plots display the anomalous low Ir content, PPGE enrichment and the clear control of sulphides on the distribution of the PGEs and Au. The ratio Pd/Ir is extremely high (1800-9300) indicating extreme fractionation of the PGEs. These trends may, in part, reflect PGE abundances inherited from the source (i.e. relatively low degrees of partial melting) but were exaggerated by the extraction of the IPGE during the early stages of fractional crystallization and by the precipitation of a PPGE-enriched sulphide component. The Complex is known to host minor Pd-Pt-Au-Cu mineralization, disseminated throughout the intrusion. The mineralization consists of chalcopyrite and bornite and their alteration products digenite and covellite, electrum (Au-Ag alloy), Pd-As, Pd-Sb, Pd-S, michenerite (PdBiTe2) and sperrylite (PtAs2). A common host rock is olivine gabbro and the silicate minerals are generally fresh. The mineralization is considered to be primary magmatic for a number of reasons, foremost of which are (i) the clear association of the PGMs with intercumulus (magmatic-textured) fresh or relict Cu-sulphides and (ii) a continuum in Pd/Pt, Cu/Pd, and Cu/Pt ratios from background to mineralized samples which strongly suggests that the processes responsible for the enhanced PGE content of the Bucknalla Complex were also responsible for mineralization. In as much as the former must have been produced by magmatic processes it is concluded that the higher grade PGE-Cu-S mineralization was also caused by primary magmatic processes. A model is proposed in which mineralization is sporadically generated by influxes of small batches of PGE-rich S-undersaturated magma into a magma chamber in which the resident magma has reached S-saturation due to fractional crystallization processes. Other intrusions in the region, namely; the Eulogie Park Complex, the Fred Creek intrusion and the Boogargan intrusion, are not considered prospective for stratiform PGE mineralization due to their low background PGE tenor, low Pd/S and Pd/Se ratios and high S contents.
  • Item
    Thumbnail Image
    The platinum-group element geochemistry and petrogenesis of the Heazlewood River mafic-ultramafic complex, Tasmania
    Peck, David C. ( 1990)
    The Heazlewood River mafic-ultramafic complex (HRC) comprises well-layered olivine- and orthopyroxene-rich cumulates, gabbronorite dykes, tonalites and low-Ti tholeiitic basalt and boninite lavas. The complex was emplaced as part of a large, low-angle thrust sheet during the middle Cambrian and subsequently deformed during the Devonian, so that the original stratigraphical relationships are obscured. The cumulate succession incorporates two distinct blocks, viz. the western HRC, comprising primitive adcumulates, and the eastern HRC, consisting of more evolved orthocumulates and mesocumulates. These two cumulate blocks are interpreted to represent stratigraphically equivalent parts of a single magma chamber. In this scenario, the western HRC represents an axial part of the intrusion where high heat flows, due to repeated injections of primitive magma, promoted the development of a compositionally zoned magma chamber. In contrast, the eastern HRC is believed to constitute a marginal facies of the intrusion, where sidewall cooling caused rapid crystallisation of successive magma additions and inhibited adcumulate growth and the formation of a compositionally stratified liquid column. Results from a detailed study of the mineral compositions and whole-rock geochemistry of the HRC suggest that all of the cumulates and most of the dykes and tonalites were derived from boninitic parental magmas. This hypothesis is substantiated by empirical models which were calculated using both major and trace element approaches. The models also show that the low-Ti basalts (second-stage melts) and boninites (third-stage melts) were probably derived from component-induced progressive partial melting of a MORB-depleted spinel lherzolite source. Partial melting of the refractory mantle source was initiated and sustained by the continued influx of slab-derived Si02-, LREE-, Zr-enriched hydrous fluids. The proposed petrogenetic model for the HRC is most consistent with an island arc setting for the complex, with melting occurring in MORB-depleted forearc lithosphere overlying a subduction zone. The HRC is not an ophiolite sensu stricto, despite the fact that it is more similar to the upper portions of the so-called 'island-arc ophiolites' (eg. Troodos) than to any other type of ultramafic intrusion. It is best perceived as a high-level boninitic magma chamber which developed immediately beneath a platform of genetically-related submarine lavas. The composition of the boninitic parental magmas was the principal control on the PGE geochemistry of the cumulate sequences. Despite representing PGE-enriched, S-undersaturated second-stage melts similar to the parental (U-type) magmas for the ultramafic portions of the Bushveld complex, the boninites were unable to form a Merensky-reef type PGE deposit because they did not come into contact with S-saturated (A-type) magmas. In the absence of cumulus sulphides, the PPGE (Pt, Pd, Rh) were partitioned into the residual liquids, whereas the IPGE (Os, Ir, Ru) were strongly fractionated into early-formed olivine-chromite cumulates. These features are highlighted by the extremely low IPGE tenor of the boninites, and the relatively high IPGE tenor of the dunites in comparison to the more evolved cumulates. Three types of chromitites are recognised in the HRC. Type I and type II chromitites occur as magmatic schlieren which probably formed during replenishment events. Type III chromitites occur as layers, pods and irregular patches developed in an unusual xenolith-bearing plagioclase peridotite. It is interpreted to have formed due to mixing between ascending xenolith-bearing, hydrous intercumulus liquids and resident ultramafic magma along the floor of the magma chamber. Chromitite occurrences in the HRC are enriched in PGE by up to two orders of magnitude relative to their ultramafic host rocks, and most strongly-enriched in Ru and/or Pt and Rh. Their PGE tenor reflects the early crystallisation of laurite, followed by Pt and Rh sulpharsenides, in response to increasing S and As activities which developed primarily due to magma mixing. The low Os and Ir abundances in the chromitites is believed to reflect their formation from Os- and Ir-depleted boninitic magmas. The HRC and the Adamsfield complex were the world's major suppliers of Os-Ir-Ru alloys during the early part of this century. The alloys occur in alluvial deposits that are spatially associated with primitive olivine-rich cumulate sequences. The latter are commonly suspected to represent the source for the alloys, but recent exploration programs have yet to define a bedrock occurrence of Os-Ir-Ru alloys in Tasmania. The results from the present study provide important constraints on the genesis of these alloys. Silicate inclusions found in the alloys suggest that they formed at mantle temperatures and pressures and were transported to crustal magma chambers by boninitic magmas. The alloys may have crystallised during ascent, or alternatively, represent residual mantle phases which became incorporated into the boninites during partial melting. Most of the observations pertaining to the Os and Ir geochemistry of the HRC suggest that the alloys probably occur in thin magmatic concentrations that were deposited along the base of the intrusion from the most primitive of the boninitic magmas involved in the generation of the cumulate sequences. Future exploration should focus on delineating the cumulate products of these primitive magmas and specifically, in defining the horizons which demarcate fresh influxes of these liquids.
  • Item
    Thumbnail Image
    Late quaternary rivers and lakes of the Cadell Tilt Block region, Murray Basin, southeastern Australia
    STONE, TIM ( 2006)
    A record of climatic, hydrological and tectonic change spanning the last glacial cycle (-130,000 years) has been obtained from alluvial, aeolian and lacustrine sequences in the Cadell Tilt Block region of the central Murray Basin. Optically stimulated luminescence (OSL) is the principal method of chronological control, with a total of 50 new luminescence ages. Two AMS radiocarbon (^14C) ages are supplementary. Soils are used for relative dating of landforms beyond the range of OSL and ^14C. The result is the largest corpus of late Quaternary ages ever produced for the region. The chronology of the Lake Tyrrell lunette sequence has been revised from previously published interpretations. Beach sediments ~13.5 m above the present lake floor were deposited by Lake Chillingollah, a marine oxygen isotope stage (MIS) 5 (~ 130,000- 75,000 years ago) megalake. The megalake dried because of decreasing winter rainfall and fragmented into a groundwater discharge system. A silty clay dune deflated from the Lake Tyrrell floor ~27,000 years ago ended a long period of pedogenesis and buried evidence for Aboriginal visits to the lakeshore. The earliest evidence for aridification along the Murray River is an episode of riverine source-bordering dune formation in early MIS 4 (~72,000 years ago). The event is a minimum age for the initiation of construction of the Barmah Fan, which accreted in response to uplift of the Cadell Tilt Block. Fan sedimentation on the foot wall close to the fault scarp appears to have accelerated between 65,000 and 45,000 years ago. The Green Gully palaeochannel on the uplifted block was abandoned by the Murray River soon after this period, which culminated in an episode of riverine source-bordering dune formation ~40,000 years ago. The Goulburn River was not defeated by uplift. An older prior stream on the uplifted block, with undatable strong red-brown earth soil profiles along its margins, is not a course of the Goulburn. Instead, the Goulburn River was deflected to the southwest where it developed the Tallygaroopna meander belt ridge. This course had been deflected by ~65,000 years ago. Vertical aggradation of the ancestral Goulburn continued until ~23,000 years ago. Riverine source-bordering dunes were beginning to form again when a clay plug filled the palaeochannel. The Tallygaroopna meander belt ridge is visible beneath the floor of Lake Kanyapella on LIDAR DEM imagery. Downstream it follows the course of Gunbower Creek. Lake Kanyapella is not fault-dammed or fault-controlled because it post-dates formation of the ridge. The lake formed ~34,000 years ago and was sustained by flows from the Tallygaroopna palaeochannel for ~10,000 years. A model of lake formation is proposed based on vertical bedload aggradation. That is, the lake emerged because the Goulburn River had fully-aggraded and could no longer channel its flood flows. This long-term ponding may be of wider palaeohydrological significance. Riverine source-bordering dunes form only at the end of the lacustral period. The Goulburn River avulsed from the meander belt ridge at the end of the Last Glacial Maximum (~18,000 years ago). The Kotupna palaeochannel was rapidly entrenched and back-filled, with riverine source-bordering dunes emplaced along its course in a geological instant. The harsh climate of the LGM was adapted to by the Kow Swamp people who developed robust physical morphologies in response to the cold conditions. Gracilization of the population is related to post-glacial climatic amelioration, which increased gene flow. Robust humans are rare after the LGM. Palaeochannel morphology is not climatically-controlled. Kotupna-type bars were deposited along the Bullatale Creek course of the Murray River in the Holocene, without any concomitant source-bordering dune formation. The Barmah Choke reach of the Murray River is relatively straight because it is a modern avulsion, not an inert Holocene river course. This avulsion happened only ~550 years ago, effectively shutting down the depositional system that constructed the massive Wakool Fan. This event ended a 75,000 year long avulsion sequence.