School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Geology of the Dookie District (Part I) & Trace element distributions within some major stratiform orebodies (Part II)
    Smith, Robert Neville ( 1973)
    Part I: The Cambrian rocks outcropping in the Dookie district consist of a series of altered igneous rocks (diabases), a variety of pyroclastic rocks and cherts. The igneous rocks are thought to have been originally tholeiitic, having undergone low grade burial metamorphism, hydrothermal alteration and possibly contact metamorphism. Field evidence indicates that at least one of the igneous bodies is intrusive, probably a sill. The relation between these rocks and Cambrian rocks elsewhere in Victoria is discussed. The lithology and structure of an area of folded Ordovician and Silurian — L. Devonian sediments outcropping to the south of the main Cambrian massif is reviewed. Part II: Trace elements Tl, Ag and Au abundances in whole rock samples from a number of important stratiform basemetal orebodies have been determined by neutron activation analysis. Suites of samples were taken from the HYC Zn-Pb-Ag deposit at McArthur River, N.T., the Cu-Pb-Zn deposit of Rosebery, Tasmania and a Karoko type orebody from Shakanai, Japan. While the distribution of Au and Ag in the three deposits were found to closely follow those of Cu and Pb respectively, a higher Ag/Au ratio is apparent in the HYC deposit. In the other deposits, probably formed at temperatures greater than 200°, high concentrations of Au are explainable in terms of high temperature transport via chloride or thiocomplexing, while in the HYC deposit, formed below 150°, hydrothermal transport of comparable amounts of Au is considered unlikely. In response to lower temperature, strongly reducing conditions and restricted circulation, Tl concentrations in the HYC deposit are markedly greater than those in the remaining deposits. At McArthur River, significant enrichments in Tl occur up to, 250 metres stratigraphically above the main ore shales, and the geochemical significance and practical value of such metal haloes about stratiform orebodies are discussed.
  • Item
    Thumbnail Image
    Geology of the Wood's Point dyke swarm
    Green, A. H. ( 1974)
    The wood’s Point dyke swarm, Victoria, consists of a set of abundant subparallel narrow dykes with occasional elliptical expansions (“bulges”) intruded into strongly folded Lower Palaeozoic sediments. The swarm represents a hisly differentiated calc-alkaline rock series derived by fractional crystallization of a single parent magma, possibly of periodotitic composition. The rock types present include both high and low Cr-Ni periodotites, pyroxenite, hornblendite, hornblende diorite and monzonite, biotite leucodiorite, and minor residual granophyre. Apart from this hornblende-bearing rock series, a few hornblende-free basaltic dykes of related chemical composition but intruded later, are petrographically and mineralogically distinct, displaying tholeiitic tendencies. The latter dykes appear to be genetically related to volcanics underlying the Upper Devonian Acheron and Cerberean cauldron subsidences. Fractional crystallization, flowage differentiation, crystal accumulation and chilling were important factors in the development of the members of the dyke swarm, whilst assimilation in situ was not. The dykes are zonod, ultramafic types having more basic interiors (“cores”) whereas basic to intermediate composition bulges have more basic margins (“rims”). Magmalic copper-nickel sulphides rich in precious metals (Pt, Pd, Au) occur in dyke bulges of all compositions, especially close to margins where they accumulated by gravitational settling or were trapped by chilling. The sulphides have high Cu/Ni (and Co/Ni) ratios indicative of a highly evolved magma and, along with Au, Pd and Ir are fractionated between dykes of different silicate compositions. The base metal contents of silicates and sulphides vary sympathetically. The dykes have undergone pervasive hydrothermal alteration during which sulphides were largely recrystallised and Au was leached from some copper-nickel sulphides. A zonal arrangement of increasing intensity of alteration inwards was observed in one ultramefic dyke bulge. Later the dykes were deformed and the basic to intermediate composition dykes were fractured and veined, and major gold deposits formed. The veins have associated wall rock alteration which may be mineralogically subdivided into inner and out zones. Dyke bulges, ultramafic rocks, copper nickel sulphides and Au mineralization are all concentrated along two main lineations paralleling the fold axes of the sedimentary trough. The eastern and more important trend (at the centre of the trough) marks the eastern limit of the dyke swarm except at its northern end. These lineations may represent deep-seated fractures which controlled the later upward migration of Au-bearing hydrothermal solutions from depth. The source of the Au could have been various rock types present at depth, including copper-nickel sulphides and Lower Palaeozoic sediments.