School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    No Preview Available
    Antarctic sea ice and its interactions with high latitude weather and climate
    Watkins, Andrew Bruce ( 1998)
    Antarctic sea ice plays a major role in the earth system by greatly influencing the high latitude exchanges of heat, moisture and momentum between the ocean and atmosphere, as well as profoundly effecting the salt budget of the ocean, and thus the production of Antarctic Bottom Water, one of the driving mechanisms of worldwide oceanic circulation. With such considerable and far reaching impact, it is important to document its climatology, understand its variability and quantify its influence. Climatologies and trends of the Southern Ocean sea ice pack are presented using the most recent satellite observations available from the Defense Meteorological Program’s (DMSP) Special Sensor Microwave Imager (SSM/I). The analysis of these data show that Antarctic sea ice is highly variable in both time and space. Statistically significant increases in the sea ice extent, open water and ice areas have been determined from the SSM/I data for the 9 year period 1987 to 1996, a result which differs from the Scanning Multichannel Microwave Radiometer (SMMR) observations (1978-1987). The increasing trend in the SSM/I observations can be attributed to the large increases in sea ice observed in 1994-1995, as confirmed by an analysis of data from the ERS-1 satellite. The mean season length during these years has remained relatively unchanged. Regional trends, both in the sea ice concentration and in season length, showed vast spatial inhomogeneity. SSM/I data displayed increasing season length in the central Weddell Sea, Bellingshausen Sea and Balleny Islands regions, with decreasing length in the Amundsen Sea, eastern Ross Sea and in the coastal areas off Wilkes Land. Similar trends are observed in the seasonal sea ice concentration. In most cases, these trends are opposite to those observed in the SMMR data, which may be linked to the shift observed in the Amundsen Sea low after 1990. Comparisons with historical data would suggest that no large scale anomalous change has occurred in the Antarctic sea ice limits over the course of human observation. Furthermore, the degree of variability suggests great care is needed in interpreting large scale changes in sea ice conditions, and hence atmospheric or oceanic change, from locally observed anomalies. Case studies of the effect of individual cyclones upon the sea ice concentration show small but definite modification of the ice conditions. To further diagnose aspects of the thermodynamic and dynamic forcing upon the Antarctic pack, detailed analysis of the sea ice concentration variability has been conducted using spectral techniques, and the spectra have been compared to those of the European Centre for Medium Range Weather Forecasts (ECMWF) temperature and wind data. In all cases, and with the seasonal cycle removed, the sea ice concentration shows a bias towards longer timescales of variability than either the wind stress or surface air temperature. This “red shift” in its frequency spectrum is strongest with the wind stress, and weakest with the temperature. For longer period waves, this may be due to the formation of new ice by surface cooling or the moderation of melting by the cold surface water, whereas for shorter period waves, where wind stress dominates temperature and ice concentration respectively, time is required for winds to draw in warmer or cooler air, as well as to overcome the ice masses inertia and keel friction to open or close leads. Strong intraseasonal variability of the sea ice concentration is observed in the 20-25 day period, reflecting similar timescales of the temperature variability, as well as that of the energetic eddies of the Antarctic circumpolar current. Examination of the latitudinal variation of the sea ice concentration, temperature and wind stress spectra showed not only the importance of the north-south temperature gradient in influencing the variability, but also the seasonal changes in the semi annual oscillation of the circumpolar trough. Regional spectra showed clear differences between location, and reflected the influences of the atmosphere and ocean upon the sea ice pack. This is clearly shown in the Weddell Polynya region and off East Antarctica, with high variability in the synoptic timescales, and in the western Ross Sea where changes occur in timescales of greater than 20 days. In order to determine if satellite derived, real time sea ice concentration and distribution would be of benefit to operational numerical weather prediction (NWP) schemes, the effect of sea ice concentration change upon the atmosphere in synoptic timescales was examined using a general circulation model in conjunction with the Australian Bureau of Meteorology’s GASP analyses. Experiments were conducted with a typical July sea ice concentration and distribution, as well as slab concentrations of 0, 10, 25, 50, 80 and 100%. Results from 5-day numerical weather forecasts show that the central pressure, structure and tracks of individual cyclones are sensitive to the ‘switch on’ of different sea ice conditions. Composites of all forecasts made with each concentration showed considerable, and mostly statistically significant, anomalies in the surface temperatures and turbulent heat fluxes over the sea ice. The magnitudes of these changes varied monotonically with the area of open water. The largest changes were simulated closest to the coast for all concentrations except for the typical July sea ice run, which displayed maxima over the outer pack. Significant westerly anomalies were induced over the ice in all cases, as were reductions in mean sea level pressure. The July sea ice runs displayed a distribution of the mean sea level pressure anomaly different from all others, with maxima occurring in the central to outer pack. All other forecasts displayed maxima at the coast. The results suggest that sea ice concentration does induce anomalies in the atmospheric parameters in timescales of less than five days. Further, the use of a realistic distribution of sea ice concentration produces results distinct from the constant concentration forecasts. Hence it is suggested that real time Antarctic sea ice data may be of considerable benefit to numerical weather prediction models.
  • Item
    Thumbnail Image
    Leachate chemistry of two modern municipal waste landfills in Melbourne, Victoria
    Strudwick, Darryl Grant ( 1999-11)
    This study investigates the occurrence and chemical composition of leachate at Clayton South and Brooklyn Municipal waste landfills in Melbourne, Victoria. Both are ‘modern’ municipal waste landfills, being engineered and managed consistent with current regulatory requirements. These landfills accept only putrescible and solid inert waste, but not soluble chemical, hazardous, liquid or prescribed industrial waste. (For complete abstract open document) Analyses of an extensive range of chemical parameters reveals a complex mixture of inorganic and organic compounds, similar to those of international authors researching leachate chemistry. Dominant ions in these leachates are NH4+, Na+, HC03- and Cl-. Except for Fe, heavy metals are not present in significant concentrations (mostly
  • Item
    Thumbnail Image
    Geology and tectonothermal history of The Fishery Bay Region, Eyre Peninsula, South Australia
    Elliott, Andrew R. ( 1998)
    The Fishery Bay region, southern Eyre Peninsula, South Australia, consists of Archaean charnockitic and paragneissic sequences of the Sleaford Complex intruded by Palaeoproterozoic granitoids and two generations of mafic dykes. These rocks preserve the deformational and metamorphic effects of the Kimban Orogeny and the later Wartakan Event. Within the Fishery Bay area, five separate ductile deformation events (D1-D5) are recognised, the dominant of which (D2-D3) are associated with granulite facies metamorphism. The effects of the D3 event are pervasive throughout the Fishery Bay region, with D1 and D2 preserved only in regions of low-D3 strain. The overprinting nature or D3 is recognised in the reorientation of D2 structures. The dominant response of the area to D3 strain is a series of westerly-dipping dextral oblique reverse shears with west block-up movement. Much of the strain is localised within the paragneisses and along the margins of mafic dykes recognised in the development of a NNE-trending D3 high-strain zone termed the Cape Wiles Shear Zone. D3 observations from the Fishery Bay region correlate well with previous studies conducted on southern Eyre Peninsula which lead to the inference that D3 west block-up exhumation is responsible for the positive pressure gradient that exists from west to east across the Kalinjala Shear Zone. The pressure-temperature conditions preserved in the mineral assemblages of the paragneiss units and mafic dykes record two granulite facies metamorphic events, M2 and M3. Mineral assemblages associated with M2 and M3 are similar and passage from M2 to M3 did not result in reaction textures which indicates the proximity of the thermal conditions of these two metamorphic events. M2 corresponds to the second deformational event (D2) where peak metamorphic conditions reached pressures of 8.6±3.2 kbar at 750-900°C, The second thermobaric event correlates with the third deformation event (D3) and a metamorphic peak of 4.1±1.9 kbar at 750-850°C. The decompression of the Fishery Bay region during D3/M3 is synchronous with crustal thickening of the terrain east of the area.
  • Item
    Thumbnail Image
    The geochemistry and petrology of the Enterprise dolerite, Ora Banda, Western Australia
    Gregory, Melissa Joy ( 1998)
    The Enterprise Dolerite was emplaced as an intrusive tholeiitic sill within the Ora Banda Sequence at Ora Banda in the Eastern Goldfields Province of the Yilgarn Craton. The Enterprise Dolerite is now a metamorphic body with modifications in both the mineralogy and geochemistry of the rocks. Careful analysis of petrographic features integrated with geochemical trends have made it possible to interpret the original igneous characteristics of the sill. It is proposed here that the order of crystallisation in the Enterprise Dolerite is plagioclaseolivine- clinopyroxene-quartz. Furthermore, plagioclase and olivine accumulated through crystal settling before a switch to in-situ crystallisation in the remainder of the sill. The bulk chemistry of the Enterprise Dolerite is equivalent to that of the Mt Ellis Sill which occurs at the same stratigraphic position, and it is proposed here that they are continuations of the same intrusive body. This intrusive body is related to the other mafic members of the Ora Banda Sequence, with all members forming a differentiation trend and in which the Big Dick Basalt represents a primary mantle magma. The Enterprise Dolerite/Mt Ellis Sill has evolved in composition along the trend from this primary magma. Finally, the addition and removal of phases has produced a chemically evolving system with differentiation progressing to maxima in silica and iron concentrations which provide very good conditions tor gold deposition. This study proposes that both the Enterprise Dolerite and the Mt Ellis Sill be examined for future potential gold mineralisation.
  • Item
    Thumbnail Image
    Garnet-bearing metabasic rocks at Mount Joel: an investigation into distribution, petrology and equilibrium thermodynamic modelling
    Farrell, Nicole ( 1998)
    Garnet-bearing metabasic rocks at Mount Joel, Yilgarn craton, Western Australia, have been studied to determine their distribution, petrography and mineral equilibria. At depth, the orientation of garnet-bearing rocks is approximately 340°N, dipping 60°-70° to the east and mimics that of chloritoid schist and gold mineralisation. Three mineral assemblages at Mount Joel can contain garnet, including: chloritoid-chlorite-plagioclase-quartz-garnet; chlorite-plagioclase-quartz-garnet; chlorite-hornblende-plagioclase-quartz-garnet. Garnets are manganese-rich, composed of up to 23% spessartine. Bulk rock analysis suggests a correlation between manganese enrichment and the appearance of garnet in mineral assemblages. The chemical relationships are consistent with the garnet-bearing rocks being formed from altered basaltic rocks. Thermodynamic calculations have been undertaken using an internally consistent thermodynamic dataset (Powell and Holland, 1990) and THERMOCALC v2.5. Phase diagrams, including Pressure-Temperature (P-T) Projections, P-T Pseudosections and Temperature-Composition (T-X) Pseudosections, have been used to model the mineral equilibria for FeO-MgO-Al2O3-SiO2-H2O (FMASH), Mn-FeO-MgO-Al2O3-SiO2-H2O (MnFMASH)and CaO-Na2O-MnO-FeO-MgO-Al203-Sí02-H2O (CaNaMnFMASH) systems. Upon addition of manganese to a garnet-free system (FMASH), garnet becomes introduced as a new stable phase. As a result, garnet can be present in low pressure and temperature metabasic rocks, such as those at Mount Joel. The variety of mineral assemblages in garnet-bearing rocks at Mount Joel reflects a range in mineral chemistry of the metabasic rocks, possibly due to a range of alteration processes affecting these rocks. The pressure and temperature conditions of formation of garnet-bearing metabasic rocks at Mount Joel have been constrained to about 510 °C at about 3 kbars.
  • Item
    Thumbnail Image
    Detection of uranium(VI) in groundwater using a field electroanalytical technique
    Dwyer, Athene Tracy ( 1999)
    In this thesis electroanalytical methods are investigated and a new method developed to determine uranium(VI) in groundwater samples. Differential pulse polarography, differential pulse voltammetry and adsorptive stripping voltammetry methods, with appropriate mercury drop electrodes, were optimised using the adsorptive chelate 2,5-dichloro-3,6-dihydroxy-l,4-benzoquinone (chloranilic acid). An alternative adsorptive stripping voltammetry method, with a hanging mercury drop electrode, was optimised using the chelate 8-hydroxyquinoline (oxine). The liquid mercury requirements of these techniques limit their use in the field. Therefore, mercury film electrode methods that are potentially better suited to field conditions are investigated. Chloranilic acid was found to be a suitable chelating agent for uranium determination in combination with a hanging mercury drop electrode, but the reduction of chloranilic acid was a concern. A new mercury film electrode determination method using chloranilic acid was developed but was found to result in the deterioration of the MFE to the extent of rendering the method unsuitable for uranium determination. An adsorptive stripping voltammetry, MFE method with oxine was investigated. The inability to remove the uranyl-oxine reaction products from the MFE created a memory effect that contributed to a lack of accuracy and precision when performing standard addition determinations. This interference was a significant factor in the inability to reliably measure a uranium response using an adsorptive stripping potentiometry method with oxine. The technique of square wave adsorptive stripping voltammetry with oxine in combination with a hanging mercury drop electrode was found to be the most appropriate method for uranium determination. The method was fast, sensitive, precise and accurate when analysing standard solutions. A low detection limit of 2.7 µg/L was achieved. Groundwater and surface water samples were analysed by the AdSV, HMDE method with oxine. The mineral spring water samples from Daylesford, Victoria, were high in ionic content and contained interfering ions. The unacidified samples contained high concentrations of dissolved C02 that needed to be removed prior to sample analysis to prevent pH changes during analysis. Of six unacidified samples uranium was found in only one sample, the Tipperary Spring sample at 4.9 µg/L U(VI). Interference prevented confirmation of this concentration in the acidified Tipperary Spring sample. The construction of a linear standard addition plot with a positive x-intercept was a common outcome for both the unacidified and the acidified spring samples. The uranium concentration was determined in three surface water samples collected from the Ranger Uranium Mine in the Northern Territory. Matrix interference in these surface water samples resulted in non-linearity for two standard addition determinations. A third sample was successfully analysed to give a concentration of 23 µg/L U(VI), which is in good agreement with an independent determination. The unselective nature of oxine was found to result in significant interference when analysing environmental samples by the AdSV, HMDE method with oxine. This method was found to be inappropriate for field analysis of environmental samples. However, in a laboratory environment the AdSV, HMDE method with oxine was the best performing method when determining uranium in standard solutions.
  • Item
    Thumbnail Image
    High resolution solar exposure estimates from geosynchronous satellite observations for climate and near real-time applications
    Weymouth, Gary Trevor ( 1998)
    This thesis describes research and development work undertaken to produce a satellite based near-real time high resolution (6 to 24 km) surface solar exposure estimation system. Physical models of radiative transfer within the atmosphere have been developed to produce the estimates of exposure for the entire Australian continent from full resolution hourly visible Geostationary Meteorological Satellite (GMS) Stretched-Visible and Infrared Spin Scan Radiometer (S-VISSR) data. This thesis describes the exposure estimation system, including details of the physical processes modelled. The accuracy of the exposure data is presented. The first high resolution climatology of exposure across Australia is also presented and discussed. Detailed charts of mean daily exposure for each month and annual mean daily exposure form part of the climatology, based on the period November 1990 to June 1994 inclusive. Annual and four-monthly charts are compared to the available Australian Bureau of Meteorology (BoM) National Climate Centre (NCC) Solar Radiation Atlas (1975) charts based on cloud and sunshine records for the period 1968 to 1974 inclusive. Generally the agreement is good, with the satellite system providing greater spatial and temporal (all months) detail, some significant differences and higher accuracy. The satellite climatology shows that minimum exposure in the far north occurs in February due to the monsoon even though the sub-solar point is at a similar latitude. During the monsoon, the exposure minimum over Cape York is seen to shift from the east to the west side. Considerable detail of coastal and orographic exposure gradients about the east and southeast coasts is available. Other features seen for the first time are also presented. For exposure estimation, the model of Diak and Gautier (1983) has been developed further and carefully tuned for use with GMS-4 data (1990 to 1994). Extensive changes have been made to this model to use data from GMS-5, which replaced GMS- 4 in May 1995. GMS-5 has a sensor response extending from the visible to the near-infrared. The GMS-5 based model now runs operationally within the BoM, using total precipitable water estimates from the BoM regional numerical weather prediction (NWP) system, and real-time ozone estimates from the local readout of the National Oceanographic and Atmospheric Administration (NOAA) satellites. The models perform best in clear-sky conditions, with the average deviation of spatially-averaged daily model estimates from surface-based point pyranometer data being less than 5% (less than 4% against available high quality pyranometer data). In cloudy conditions, the average percentage deviation is larger. Australia-wide estimates of the accuracy of satellite-based exposure estimates have been developed. Over most of the continent, typical cloud conditions lead to daily estimates being within 8% of collocated point pyranometer measurements. No other high-resolution data set is available for direct comparison. However, results achieved here are comparable to or better than those reported for other locations. In clear-sky conditions, results presented here are as accurate as measurements from well-maintained good-quality pyranometers. The spatial and temporal variability of the exposure data has also been examined. From this, it has been estimated that over typical Australian agricultural areas, daily satellite exposure estimates are more accurate than extrapolation from a high-accuracy pyranometer more than 20 to 50 km distant. The exposure data have already been used for crop modelling purposes, as an aid to siting of high-quality ground-based measurements for a solar-thermal power station feasibility study, and for hydrological modelling. Such applications, while briefly discussed, are outside the focus of this thesis.
  • Item
    Thumbnail Image
    Tectonic geomorphology of the Bogong and Dargo High Plains region, east Victorian highlands, Australia
    Orr, Meredith Lee ( 1999)
    The Australian Alps, a sub-region of the Australian Eastern Highlands, have enigmatically high elevations of relief for a highland belt renowned for its ancient origins and landscapes. In debates over the Eastern Highlands history, the development and significance of the Alps have been under-represented. This study defines the morphological extent of the Australian Alps and investigates their tectonic and erosional development. The focus of investigation is the Bogong and Dargo High Plains area and the broader surrounding highlands region. The Cainozoic history of this area has not been investigated in detail since last century. The geological record of the region has substantial gaps, and the erosional history is the main indicator of tectonic change. A methodological structure different to traditional approaches is devised for this study. Cause and response are compared on a process geomorphology basis. Causes investigated are (1) intra-highland tectonics and (2) basin tectonics and sea level change. Denudational relief change is the main response investigated. Spinal and temporal comparison of quantitative results enables relationships to be determined. Peak height distribution and relief observations are used to define the morphological context of the Australian Alps. Within the Alps, the high plains area is used as a case study. Tectonic constructional morphology is investigated using peak height distributions, lineament analysis, tectonic landforms and lava offsets. A Cainozoic fault block is identified, and reactivated fault displacements are determined for bounding and intra-block faults. The erosional development of the area is determined and compared with the constructional morphology results. The sub-volcanic relief of the Bogong Volcanic Province is mapped and compared with post-volcanic stream incision. Guidelines are established for interpreting strath terraces and strath terrace long profiles are used to reconstruct the post-volcanic stream erosion development. Sources and magnitudes of oversteepened stream reaches in the present rivers are identified. Spatial and temporal relationships between fault reactivation and stream incision are determined, and the relative roles of active and passive tectonics are assessed. The tectonic and erosional development of the fault block is reconstructed in cross-sectional form. Finally, the proportion and nature of highland margin-derived stream incision is identified. This study finds that the Australian Alps were substantially affected by fault block uplift during Oligocene, with more minor phases in the Miocene and Pliocene. Broader highland margin warping accompanied fault block uplift. Uplift amounts varied between 150m and over 1000m according to proximity to major faults. Stream incision was upstream-increasing and periodic, with three incision phases during the Oligocene and Pliocene. The later phases include a possible isostatic rebound component. An additional incision phase unrelated to uplift occurred in the Gippsland Basin catchment during the Quaternary. The Australian Alps is delineated here as a separate entity within the Eastern Highlands, with its own tectonic history. Cainozoic uplift created the higher elevations and greater relief of the Alps. This history is not representative of the Eastern Highlands generally, and it should not be used as a guide to a ‘united’ Eastern Highlands uplift. The highlands consist of a ‘patchwork’ of landscape evolution scenarios, rather than a single tectonic province. More definable tectonic histories can be derived from erosional regions of geologically unrecorded time using a process geomorphology perspective. This study provides a suggested step towards redressing interpretation problems recognised in landscape evolution studies generally.