School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Late Cainozoic climatic and eustatic record from the Loxton-Parilla Sands, Murray Basin, Southeastern Australia
    Kotsonis, Andrew ( 1995)
    A series of ancient shoreline ridges in the western Murray Basin of southeastern Australia preserve a detailed legacy of Pliocene marine retreat. The 157 subdued NNW trending coastal ridges of the Loxton-Parilla Sands, mapped using conventional techniques and night-time thermal imagery from the NOAA and the ERS-l satellites, extend in a parallel series from 400 km inland to the present coastline, and provide a virtual contour plan of the Pliocene landscape. Coastal ridges of the Loxton-Parilla Sands range in age from 6:6 Ma in the east, to 3.5 Ma towards the west, where they are tectonically deformed by the uplift of the Pinnaroo Block. The deposition of the Loxton-Parilla Sands at 6.6 Ma is correlated with high global sea levels, with the distribution of the sands suggesting deposition at a topographic level comparable to an ice-free earth (i.e. complete deglaciation of the polar regions). Coastal ridges consist of beach-barrier and near-shore sediments deposited in conditions of fluctuating sea levels. The absence of aeolian sediments within the ridges implies a significantly weaker wind-wave regime and/or permanent vegetation cover existed throughout the Pliocene. Eustatic oscillations recognized within the shoreline sequence correlate well with glacio-eustatic changes modulated by the axial precession of the earth with a periodicity near 20, 000 years. Following retreat of the sea, the Loxton-Parilla Sands were subject to deep weathering, with the resultant profile termed the Karoonda Regolith. Following cessation of coastal deposition the Karoonda Regolith developed diachronously, with the oldest pedogenic exposures in the east to the youngest towards the west. Ferric and silicic weathering profiles developed in late Miocene to Plio-Pleistocene times. Pedogenic silcretes formed by downward movement of acidic soil waters with saturation and deposition at the soilwater-groundwater interface under alternating wet and dry conditions. High water tables probably ensured accumulation of silica in the near surface environment. By the Mid Pliocene (3.5 Ma) weathering changed from predominantly silica to iron mobilization with development of ferricrete profiles. Late Pleistocene (0.7-0.4 Ma) ferricrete development ceased when arid climates developed as represented by calcareous soils across the basin. Addition of calcareous parna on the Karoonda Regolith buffered soil water pHs, and switched off ferricrete development. Extensive opaline silica dissolution under alkaline conditions resulted in the development of karstic-type solution pipes that were infilled with pisoliths and clasts of sandstone. Lowered groundwater tables probably contributed to the removal of silica from the near-surface permitting transfer to deep aquifers within the Loxton-Parilla Sands. The change from ferricrete to calcrete formation marks the onset of arid climates in Australia. Correlatives can be drawn between this continental record of sea level changes with those of the deep sea oxygen isotope curves which reflect Milankovitch-type changes in the ice budget of the world.
  • Item
    Thumbnail Image
    Late Neogene stratigraphy and sedimentation across the Murray Basin, southeastern Australia
    Miranda, J. A. ( 2007)
    The Late Neogene sedimentary sequence of the Murray Basin provides an excellent opportunity to examine paleoenvironmental change across southeastern Australia. A detailed stratigraphic analysis of sediments deposited within the basin in the last 10 Ma was undertaken to assess the influence of tectonic and eustatic processes on deposition. Stratigraphic observations and radiogenic isotope analysis reveals the onset of deposition by 7.2 Ma with a transgressive episode that deposited the marine marls of the Bookpurnong Beds. Deposition was restricted to the central and eastern parts of the basin due to the Hamley Fault. In the west, subsurface elevation contours indicate the presence of incised paleodrainage channels above Miocene limestones, which facilitated the formation of a large estuary system at 5.3 Ma. The sediments of the Norwest Bend Formation were deposited within this western region, while further east, the Loxton-Parilla Sands strandplain deposited over 214 coastal ridges. The basal parts of this unit occur as lateral equivalents to the sediments of the Lower Norwest Bend Formation (in the west). Topographic and magnetic data reveal that tectonism was active during this period and resulted in the erosion and truncation of strandlines. Tectonic evidence and an estimated minimum 28,037 year cyclicity between strandline sets, suggests that the Loxton-Parilla Sands strandlines do not represent an unbroken record of glacioeustatic change. The subaerial exposure of these sediments at approximately 3.0 Ma caused the formation of a calcareous karst above the Norwest Bend Formation and a ferruginous and/or silicious cap (the Karoonda Surface) above the Loxton-Parilla Sands. The stratigraphic position of these surfaces are indicative of a regional widespread unconformity. The Douglas-Blackburn paleodrainage system in western Victoria was dammed during the Mid-Late Pliocene by uplift associated with the Padthaway High, which caused the formation of a 400,000 km2 lacustrine system, known as Lake Bungunnia. Topographic analysis indicates that Lake Bungunnia comprised at least four distinct sub-basins with water depths of up to 30 metres, with lake shorelines indicating that active tectonism occurred during this period. The resulting lack of sediment input to the coast caused the formation of the Kanawinka Escarpment, a large erosional scarp along the southern margin of the Padthaway High. The geomorphology of the modern Murray Basin can be directly attributed to the demise of the Lake Bungunnia system. Movement along the Morgan Fault in the west at approximately 700 Ka, resulted in the draining and progressive drying of Lake Bungunnia as a breach was created along the Padthaway High. The Murray River gorge as observed today was incised following this episode. The modern Murray River (and playa lakes such as Lake Tyrell) occupy the lowest elevations along the former sub-basins of Lake Bungunnia. The Late Neogene sedimentary sequence across the Murray Basin illustrates a complex interaction of eustatic and tectonic processes on deposition. Sedimentation within strandline, estuarine and lacustrine systems, particularly in the western Murray Basin, display evidence of significant tectonic control. This highlights the important role that neotectonic processes have played in shaping southeastern Australia.