School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Climate justice: can we agree to disagree? Operationalising competing equity principles to mitigate global warming
    Robiou du Pont, Yann ( 2017)
    With the Paris Agreement, the international community has agreed to limit global warming to well below 2 °C and to pursue efforts to stay below 1.5 °C (UNFCCC 2015a) to avoid dangerous climate impacts. Staying within these boundaries requires important emissions mitigation efforts from all countries (Rogelj et al 2015). Equitable distribution across countries of mitigation efforts, or equivalently of emissions rights, consistent with global mitigation objectives is a contentious issue that involves divergent interpretations of distributive justice (Winkler and Rajamani 2014a). The latest Intergovernmental Panel on Climate Change (IPCC) report categorises equity approaches from the scientific literature in five groups (Clarke et al 2014). At climate negotiations, most countries tend to support the approach that requires the least efforts on their behalf (Fleurbaey et al 2014, Lange et al 2010). With the absence of consensus on an effort-sharing approach, current negotiations under the United Nations Framework Convention on Climate Change (UNFCCC) follow a self-interested, or ‘bottom-up’, approach to target setting (Andresen 2015, Bodansky 2016) where each country decides its own effort following its understanding of fairness. As a result, the sum of all parties’ announced contributions is not consistent with limiting global warming to 2 °C, let alone 1.5 °C (Rogelj et al 2016a). Under the Paris Agreement, countries committed to increase the ambition of their post-Kyoto climate pledges through a ratcheting-up process that begins in 2023. With the disagreement on effort-sharing approaches, the international community relies on diverging metrics to evaluate the adequacy of national pledges with the global warming thresholds. Since the beginning of climate negotiations under the United Nations, a rich literature has modelled allocations of emissions rights to countries using various effort-sharing approaches with uncoordinated parameterisation. At the start of this PhD work, no study modelled the effort-sharing categories presented in the last IPCC report under a common parameterisation. Additionally, the literature on the combination of effort-sharing approaches remained thin and consisted of averaging the emissions allocations of multiple effort-sharing approaches. This PhD thesis addresses these gaps with the modelling of a new emissions allocation framework, the ‘PRIMAP-Equity’ framework, and with the suggestion of a new combination of effort-sharing approaches. Firstly, this thesis quantifies allocations of emissions rights to countries in a manner that reflects the existing literature on distributive justice. An emissions allocation framework is developed to derive national emissions allocations that reflect the five equity categories of the fifth IPCC report. This modelling framework is applied to derive emissions allocations, under each of the five equity categories, consistent with the emissions mitigation goals of the G7 Elmau agreement signed in June 2015. The allocation framework is then used to derive national emissions trajectories aligned with the recent Paris Agreement goals of both well below 2 °C and 1.5 °C, consistently with the five equity categories . This work represents the first quantification of equitable national trajectories to achieve 1.5 °C goal and informs scientists and government experts in the preparation of the IPCC Special Report on 1.5 °C (IPCC 2017). The Nationally Determined Contributions (NDCs), countries’ national pledges, of 171 Parties are then evaluated in order to determine which, if any, categories of equity they are consistent with. As well, the thesis highlights the consistency of G20 countries’ pledges with equity allocations. This is discussed in the context of the statement on fairness contained in each pledge. This PhD thesis then addresses the apparent incompatibility between the global warming thresholds and countries’ self-interested visions of effort-sharing by suggesting a new quantitative approach. Doing so, this PhD thesis provides a new metric, inclusive of all international positions, to assess the ambition of the NDCs under the Paris Agreement. This new ‘hybrid’ allocation method reconciles the ‘bottom-up’ approach of equity with the ‘top-down’ climate threshold that they commonly agreed. Under this ‘hybrid’ approach, each country follows the least stringent effort-sharing approach – out of the five that reflect the equity categories presented in the last IPCC report – to achieve the Paris Agreement. The aggregation of current national pledges is found to align with such a ‘bottom-up’ combination of approaches and lead to a warming of up to 2.3 °C in 2100 (with a 50% chance). Conversely, an enhanced ‘bottom-up’ approach – ‘hybrid’ – of global emissions scenarios leading to 1.1 °C and 1.3 °C warmings results in the achievement of the Paris Agreement mitigation goals of 1.5 °C and well below 2 °C, respectively. Ultimately, this study quantifies a compromise where each country can choose an equity approach to determine its effort, but does directly use that approach to assess other countries’ pledges. Finally, the application of this ‘hybrid’ approach provides a temperature assessment for all countries’ climate pledges, indicating the consistency of countries’ ambition in light of the global temperature goals. The NDCs of India, the EU, the USA and China are in line with global ‘bottom-up’ situations leading to warmings of 2.6 °C, 3.2 °C, 4 °C and over 5.1 °C, respectively. The results of this thesis can inform public opinions and decision makers through the ratcheting-up process on what constitutes fair and ambitious pledges to achieve the Paris Agreement following a range or combination of equity approaches. Additionally, the assessments of the adequacy of countries’ pledges with international agreements can inform courts when ruling ‘climate cases’ where governments are sued for their lack of ambition in mitigating emissions (Sabin Center for Climate Change Law 2018).
  • Item
    Thumbnail Image
    Fire weather in two regions of the Southern Hemisphere
    Pazmiño, Daniel ( 2017)
    This thesis investigated fire weather in Victoria, Australia and the Ecuadorian Andes. The selection of these areas considered several criteria. First of all, bushfires cause significant impacts in these two regions. Victoria has endured some of the most catastrophic bushfire events in Australian history (e.g. “Black Friday” (1939), “Ash Wednesday” (1983), “Black Saturday” (2009)). On the other hand, bushfires in Ecuador destroy every year large areas of national parks in one of the most biodiverse countries in the world. Secondly, the El Niño- Southern Oscillation (ENSO) is a strong climate driver in the two study areas. Finally, Victoria and Ecuador share the Eucalyptus as the dominant bushfire-prone species. The aim of this thesis is to better understand the drivers and evolution of fire weather in these two regions of the Southern Hemisphere. Specifically, it examined three aspects. First of all, it investigated fire weather spatial patterns in Victoria and their relationship with associated events like heatwaves. Subsequently, the study explored long-term fire weather variability and changes. Finally, the investigation evaluated the influence of ENSO and other climate drivers over fire weather. The analyses used three groups of data: bushfire records, meteorological and climate indices data. Consistent bushfire records were available only for Victoria during the period 1961-2010. Additionally, the investigation required observations from weather stations in Victoria and the Ecuadorian Andes. This research also analysed reanalysis data from the Twentieth Century Reanalysis Project (20CR) and the European Reanalysis of Global Climate Observations ERA-Clim project (ERA-20C). The study had a stronger emphasis on ENSO since it affects both regions. This research used two indices to represent fire weather. The first index was the McArthur Forest Fire Danger Index (FFDI). This Australian metric was designed for an Eucalyptus environment. Therefore, this investigation applied the FFDI for Victoria and Ecuador. Additionally, this thesis proposes an alternative fire weather index for Victoria: the “Victorian Seasonal Bushfire Index” (VSBI). The VSBI combines local meteorological variables and sea surface temperature in ENSO regions to represent—and predict—extreme fire weather. The investigation of fire weather in Victoria and the Ecuadorian Andes yielded several findings. First of all, bushfire and heatwave weather patterns display differences from one another in Victoria. These comparisons used synoptic climatologies with reanalysis data during the period 1961-2010. Additionally, the investigation showed that Victoria experienced an increase in fire danger during the period 1974-2010. There is also weaker evidence suggesting an increasing trend since 1920. “El Niño” events are the leading remote driver of fire activity in Victoria. In fact, the incorporation of ENSO indicators in a simple index (VSBI) shows skill to forecast extreme fire weather in this region. For the Ecuadorian Andes, this research indicates that its fire danger season (July-September) is longer than reported. October and November also display “high” fire danger during the period 1997-2012. Finally, “El Niño” events increase fire risk in the Ecuadorian Andes.