School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Mineralogy, geochemistry and origin of the Kalgoorlie gold deposits, Western Australia
    Golding, Lee Yvonne ( 1978)
    Rich gold-telluride lodes (steeply dipping and flatly dipping) and minor gold-quartz stockwork mineralization characterize the Kalgoorlie gold-field. The origin of these gold deposits, the relationship between deposits and then nature of the host rocks are the major problems considered in this thesis. Extensive diamond drilling at the essentially unmineralized southern end of the field provided excellent material for stratigraphic studies and for country rock analysis whilst ore samples were obtained from both mines and drill core.
  • Item
    Thumbnail Image
    Geology of the Wood's Point dyke swarm
    Green, A. H. ( 1974)
    The wood’s Point dyke swarm, Victoria, consists of a set of abundant subparallel narrow dykes with occasional elliptical expansions (“bulges”) intruded into strongly folded Lower Palaeozoic sediments. The swarm represents a hisly differentiated calc-alkaline rock series derived by fractional crystallization of a single parent magma, possibly of periodotitic composition. The rock types present include both high and low Cr-Ni periodotites, pyroxenite, hornblendite, hornblende diorite and monzonite, biotite leucodiorite, and minor residual granophyre. Apart from this hornblende-bearing rock series, a few hornblende-free basaltic dykes of related chemical composition but intruded later, are petrographically and mineralogically distinct, displaying tholeiitic tendencies. The latter dykes appear to be genetically related to volcanics underlying the Upper Devonian Acheron and Cerberean cauldron subsidences. Fractional crystallization, flowage differentiation, crystal accumulation and chilling were important factors in the development of the members of the dyke swarm, whilst assimilation in situ was not. The dykes are zonod, ultramafic types having more basic interiors (“cores”) whereas basic to intermediate composition bulges have more basic margins (“rims”). Magmalic copper-nickel sulphides rich in precious metals (Pt, Pd, Au) occur in dyke bulges of all compositions, especially close to margins where they accumulated by gravitational settling or were trapped by chilling. The sulphides have high Cu/Ni (and Co/Ni) ratios indicative of a highly evolved magma and, along with Au, Pd and Ir are fractionated between dykes of different silicate compositions. The base metal contents of silicates and sulphides vary sympathetically. The dykes have undergone pervasive hydrothermal alteration during which sulphides were largely recrystallised and Au was leached from some copper-nickel sulphides. A zonal arrangement of increasing intensity of alteration inwards was observed in one ultramefic dyke bulge. Later the dykes were deformed and the basic to intermediate composition dykes were fractured and veined, and major gold deposits formed. The veins have associated wall rock alteration which may be mineralogically subdivided into inner and out zones. Dyke bulges, ultramafic rocks, copper nickel sulphides and Au mineralization are all concentrated along two main lineations paralleling the fold axes of the sedimentary trough. The eastern and more important trend (at the centre of the trough) marks the eastern limit of the dyke swarm except at its northern end. These lineations may represent deep-seated fractures which controlled the later upward migration of Au-bearing hydrothermal solutions from depth. The source of the Au could have been various rock types present at depth, including copper-nickel sulphides and Lower Palaeozoic sediments.