School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    The nature of the Kapai slate formation and its role in the genesis of gold mineralisation at the Victory gold mine, Kambalda, Western Australia
    Cotnoir, Alain ( 1989)
    Oxide banded iron-formation-hosted gold deposits account for 12.8% of the gold production from greenstone belts in the Yilgarn Block of Western Australia, but rarely occur in the Kambalda-Kalgoorlie area. Western Mining Corporation initial observations indicated that gold mineralisation at the Victory Mine, Kambalda, Western Australia, although part of a much larger mineralised system, was in some way spatially related to an unusual magnetite - rich variant of the Kapai Slate Formation, but little was known on the nature of the Kapai Slate and its role in the genesis of gold mineralisation at the Victory Gold Mine. The Victory Gold Mine consists of an Archaean vein-associated system hosted in a complexly deformed, subvertical segment of the Кapai Slate Formation, intruded by quartz albite dykes. The veins cut all rock types, and wall-rock alteration is restricted to the siliceous magnetite argillite. The Kapai Slate Formation is a persistent, thin (≤ 10 m) regional marker horizon representing a major hiatus between two volcanic events; the Devon Consols Basalt Formation and the overlying Paringa Basalt Formation. These rocks form part of the mafic-ultramafic sequence of the Kalgoorlie Group which is overlain by felsic volcanic and sedimentary rocks of the Black Flag Group. Five sulphide and oxide bearing lithofacies are recognised within the Kapai Slate Formation; i) siliceous magnetite argillite, ii) siliceous pyrrhotite argillite, iii) carbonaceous pyrite argillite, iv) magnetite chert and v) sulphide chert. The argillites are typically thin-bedded (< 10 cm) and contain more than 15 wt% iron of sedimentary origin. The Victory Deposit is hosted by siliceous magnetite argillite but there is no correlation of lithofacies distribution with structural features. Oxygen isotopic composition of the Kapai Slate Formation lies between 9 o/oo to 12 o/oo indicating a strong depletion compared to Precambrian chert ( ≤ 20 o/oo) and recent marine chert (≤ 36 o/oo). These data together with other geologic data indicate that the magnetite facies is not the result of gold-related hydrothermal alteration but may be the result of both seafloor alteration and metamorphism. The Kapai Slate Formation is compositionally and mineralogically different from other Archaean Banded Iron Formations. The Kapai Slate has high Al, Ti, Na, V, Cr, Zr and Ga, low Ti/Zr ratios, and contains zircons derived from a pyroclastic air-fall tuff (Claoue-Long et al., 1988). The nature of the Kapai Slate lithofacies is interpreted to represent a primary facies variation formed in a deep water sedimentary basin during a hiatus in volcanic activity. It may initially have been composed of both air-fall and water-borne detritus derived from a felsic volcanic source as well as chemical precipitates (sulphide and oxide). This material was totally pseudomorphed and/or replaced by silica, sodium and iron minerals during prolonged exposure on the sea floor. The only elements unaffected by the replacement process were immobile elements such as Al, Ti, Zr, Cr and V. Potassium, Mg and Ca were mobile to a certain extent during the replacement process and the chalcophile elements Cu, Co, Zn, etc. were added to the argillite as chemical precipitants along with S. At the Victory Gold Mine three types of vein sets are recognised: i) ribbon veins, ii) subvertical veins and iii) flat lying quartz veins. However, only the flat lying quartz veins are related to gold mineralisation. The mineralised veins which formed during one episode of open/space filling cut all rock types. Pyritic alteration envelopes of the vein walls are restricted to the siliceous magnetite argillite. Magnetite layers are seen to be deformed by earlier deformations and cut by all vein sets. The development of the pyritic alteration envelopes began with the infiltration of hydrothermal fluid into open fractures resulting in the sulphide replacement of magnetite. Sulphide replacement of magnetite led to the mimicking of the primary layering of the siliceous magnetite argillite. Sulphidation of the vein walls ceased before filling of the veins. After the development of pyritic alteration envelopes, mineral coatings of actinolite and albite formed along the vein walls and later bulk quartz deposition filled the vein openings. The paragenetic sequence consists essentially of a concomittent deposition of pyrite, chalcopyrite, sphalerite, galena, tellurobismuthite and gold. Gold, chalcopyrite, sphalerite, galena, molybdenum and tellurobismuthite were subsequently remobilised into fractures and along grain boundaries of pyrite during a postfilling episode of deformation. The Kapai Slate Formation and the distribution of lithofacies had no influence on the localisation of gold mineralisation at the Victory Gold Mine on a regional scale. However the competent and the more iron-rich nature of the siliceous magnetite argillite probably acted as an efficient chemical and structural trap for the hydrothermally donated S and Au.