School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Cryogenian iron formations: glaciation and oxygenation
    Lechte, Maxwell ( 2018)
    The Cryogenian Period (720–635 Ma) experienced extreme glaciations broadly coincident with a transformation of the Earth’s surface oxidation state, supercontinent breakup, and the evolution of complex animal multicellularity. However, the cause-and-effect relationships of these events are unresolved. The Cryogenian ice ages, known as ‘Snowball Earth' events, would have placed important constraints on the biosphere, and it remains unclear what role global refrigeration played in setting the stage for eukaryotic diversification and the origin of animals. The Cryogenian also experienced the deposition of iron-rich marine chemical sediments (iron formations), representing the first episode of global iron formation deposition in over one billion years. This shift in iron cycling highlights complexities in seawater chemistry and oxidation state during this time, and these iron formations offer valuable insights into Cryogenian palaeoenvironments. Iron formations from Cryogenian glacial successions in Namibia, USA and Australia were studied in order to investigate Cryogenian iron formation genesis and elucidate the relationships between glaciation, ocean chemistry, oxygenation and biotic evolution. In-depth sedimentology, stratigraphy and petrography reveals that these iron formations are intimately associated with Sturtian glacial sediments and are interpreted have been deposited in a range of glaciomarine environments. Geochemical analysis of these chemical sediments permits the reconstruction of Cryogenian ocean chemistry and the synglacial palaeoredox landscape. Multiple geochemical proxies, including rare earth element and iron isotope systematics, indicate widespread marine anoxia with increasing seawater oxidation with proximity to the ice shelf grounding line. A genetic model is proposed whereby the mixing of oxygenated glacial fluids with ferruginous seawater led to the deposition of iron formations in glacial successions during the Cryogenian. Atmospheric oxygen trapped in glacial ice was likely an important oxidant source, delivered to Cryogenian glaciomarine environments via subglacial meltwater outwash. This meltwater supply may have been crucial in establishing oxygenated marine habitats for eukaryotes, including early animals, during Snowball Earth. Multi-million-year oxidation of the oceans via this mechanism may have also set the stage for a Neoproterozoic marine oxygenation event.
  • Item
    Thumbnail Image
    Isotopic disequilibrium in granitic systems: the origins of heterogeneity in granites and implications for partial melting in the crust and petrogenetic models
    Iles, Kieran Anthony ( 2017)
    Unravelling the processes involved in granite magmatism is essential to our understanding of the continental crust, its formation and evolution. Radiogenic isotope systems are commonly employed to this end, but the behaviour of these systems may not be as simple as is often assumed. Understanding the causes of isotopic complexity in granite suites is the aim of this research. By modelling the disequilibrium partial melting of isotopically heterogeneous protoliths the different compositions of the melt, source and restite for a range of hypothetical scenarios have been calculated. Results demonstrate that the melt produced may have Sr, Nd and Hf isotope compositions distinct from both the protolith and restite. A corollary is that restite-bearing magmas may exhibit different isotope compositions than their melts, a feature which should be preserved as a difference between the Hf isotope compositions of bulk-rock samples and their magmatic zircon populations. The same modelling also suggests that a single source rock can produce melts with diverse isotope compositions. The predictions of this modelling have been tested by analysing S- and I-type granites from the Lachlan Fold Belt, southeastern Australia, including iconic examples of restite-bearing rocks. Comparisons of Hf isotope compositions between bulk-rocks and their magmatic zircons reveal discrepancies (ΔεHfbulk-zircon) ranging from -0.6 to +2.5 ε units for I-type granites. This intra-sample Hf isotopic heterogeneity is interpreted to represent disequilibrium between the melt and restite assemblage. The ΔεHfbulk-zircon values are consistent with calculated ΔεHfmagma-melt values (from -4.2 to +7.4) based on the disequilibrium amphibole dehydration melting of 0.5-1.0 Ga meta-igneous protoliths. S-type granites also record differences between their bulk-rock and magmatic zircon Hf isotope compositions; however, the disparity is more subtle. Both positive and small negative ΔεHfbulk-zircon values are observed, consistent with modelling the partial melting of isotopically heterogeneous meta-sedimentary protoliths. In addition to low-temperature granites, case studies of two high-temperature I-type granitoid suites (Boggy Plain and Wallundry) have also been conducted. Both display a weak coupling between geochemical parameters that have been interpreted previously to indicate the involvement of assimilation and fractional crystallisation (AFC) processes. Positive ΔεHfbulk-zircon values obtained in the Boggy Plain Suite support the existing petrogenetic model in which basaltic melt becomes variously contaminated by material derived from the continental crust. The positive value is explained by retention of earlier-crystallised, more radiogenic phases in isotopically evolved, more felsic samples. In contrast, the Wallundry Suite is characterised by negative ΔεHfbulk-zircon values caused by the presence of unmelted components of its contaminant. A complex interplay of contamination, crystallisation, melt segregation and interaction between magma batches is required to account for the Wallundry Suite isotope data. The results of this study indicate that disequilibrium partial melting can produce within-suite isotopic variability without recourse to assimilation or mixing processes (1) in mafic to felsic samples caused by the progressive separation of melt from its isotopically distinct restite assemblage; and (2) via the extraction of multiple batches of isotopically distinct melts produced from a single source as anatexis proceeds. Furthermore, the isotope variation resulting from restite unmixing may be distinguished from magma mixing by decoupling of the Rb-Sr, Sm-Nd and Lu-Hf isotope systems. Importantly, the isotopic discrepancy between bulk-rock granite samples and their magmatic zircon populations suggests that the most mafic bulk-rock granite samples of a given suite, not magmatic zircon, provide the most accurate estimate of source rock Hf isotope compositions. This raises concerns regarding the ubiquitous use of zircon Hf isotope data to constrain crustal growth models.
  • Item
    Thumbnail Image
    Neoproterozoic seas: ocean chemistry and marine carbonate mineralogy
    HOOD, ASHLEIGH ( 2014)
    The step-wise oxygenation of the ocean-atmosphere system is arguably one of the most profound processes in Earth history, affecting most surficial Earth processes. The last major oxygenation of the oceans is believed to have occurred in the Neoproterozoic Oxygenation Event (~800-540 Ma), and is implicated as a trigger for the rise of animal life. However, the timing of this event is not well constrained, both due to geochronological problems with Neoproterozoic stratigraphy; and because of the inherent uncertainty in ocean oxygenation proxies. Furthermore, there is now evidence for a more complex Neoproterozoic ocean chemical history, including return to strongly anoxic and ferruginous conditions. An additional complication in the understanding of Precambrian marine environments is the abundance of dolomite in Proterozoic successions. A recently discovered series of dolomitic reef complexes in the Neoproterozoic Adelaide Fold Belt, Australia, and Otavi Belt, Namibia, improve our understanding of Precambrian marine conditions. Stratigraphic and petrological analysis suggests that synsedimentary marine dolomite precipitation was pervasive within these reefs. Newly described dolomite cements have optical properties, chemical zonation and cathodoluminescent characteristics indicating that they were direct marine precipitates. Dolomite precipitation during marine diagenesis in these reef complexes suggests that the oceans of the Cryogenian were chemically different to those of the Phanerozoic. Marine dolomite precipitation appears to be linked to anoxic, magnesium-rich ocean conditions. These newly documented primary marine dolomite cements preserve information about conditions in the parent seawater via their petrographic properties and geochemistry. Being constrained by sedimentology, carbonate geochemistry provides a window into Cryogenian ocean chemistry and structure. Geochemical results reveal a pronounced chemical stratification where a thin veneer of oxic surface waters existed above a peritidal redoxcline with anoxic, strongly ferruginous seawater at depth. These conditions describe a ferro-sulfidic ocean and encompass some of the most extreme anoxia yet documented during the late Precambrian. A return to Archean-like ocean conditions at this time suggests large-scale disruption of the ocean system during the Neoproterozoic. These conditions may be linked to extreme climatic fluctuations at this time, perhaps induced by ocean stratification in this Neoproterozoic ‘Stagnant Earth’. When analysed in stratigraphic framework, variations in carbonate mineralogy provide a record of ocean oxygenation during the Neoproterozoic. New sedimentological and stratigraphic constraints for the Namibian Otavi Belt provides a context for this variation and has also led to the discovery of new Cryogenian reef complexes. When correlated with the Adelaidian succession, the distribution of marine cements in these sequences reflects changing seawater conditions. Pre-Sturtian, Neoproterozoic oceans precipitated both dolomite and aragonite and developed widespread marine anoxia prior to glaciation. Interglacial Cryogenian oceans were extremely anoxic and ferruginous, with widespread dolomite precipitation. In contrast, late Cryogenian and Ediacaran oceans hosted abundant aragonite precipitation recording a gradual decline in marine dolomitisation. The deepening of the oceanic chemocline during this interval suggests that these seas were likely to have been moderately oxygenated, paving the way for the large-scale radiation of animal life.
  • Item
    Thumbnail Image
    The platinum-group element geochemistry and petrogenesis of the Heazlewood River mafic-ultramafic complex, Tasmania
    Peck, David C. ( 1990)
    The Heazlewood River mafic-ultramafic complex (HRC) comprises well-layered olivine- and orthopyroxene-rich cumulates, gabbronorite dykes, tonalites and low-Ti tholeiitic basalt and boninite lavas. The complex was emplaced as part of a large, low-angle thrust sheet during the middle Cambrian and subsequently deformed during the Devonian, so that the original stratigraphical relationships are obscured. The cumulate succession incorporates two distinct blocks, viz. the western HRC, comprising primitive adcumulates, and the eastern HRC, consisting of more evolved orthocumulates and mesocumulates. These two cumulate blocks are interpreted to represent stratigraphically equivalent parts of a single magma chamber. In this scenario, the western HRC represents an axial part of the intrusion where high heat flows, due to repeated injections of primitive magma, promoted the development of a compositionally zoned magma chamber. In contrast, the eastern HRC is believed to constitute a marginal facies of the intrusion, where sidewall cooling caused rapid crystallisation of successive magma additions and inhibited adcumulate growth and the formation of a compositionally stratified liquid column. Results from a detailed study of the mineral compositions and whole-rock geochemistry of the HRC suggest that all of the cumulates and most of the dykes and tonalites were derived from boninitic parental magmas. This hypothesis is substantiated by empirical models which were calculated using both major and trace element approaches. The models also show that the low-Ti basalts (second-stage melts) and boninites (third-stage melts) were probably derived from component-induced progressive partial melting of a MORB-depleted spinel lherzolite source. Partial melting of the refractory mantle source was initiated and sustained by the continued influx of slab-derived Si02-, LREE-, Zr-enriched hydrous fluids. The proposed petrogenetic model for the HRC is most consistent with an island arc setting for the complex, with melting occurring in MORB-depleted forearc lithosphere overlying a subduction zone. The HRC is not an ophiolite sensu stricto, despite the fact that it is more similar to the upper portions of the so-called 'island-arc ophiolites' (eg. Troodos) than to any other type of ultramafic intrusion. It is best perceived as a high-level boninitic magma chamber which developed immediately beneath a platform of genetically-related submarine lavas. The composition of the boninitic parental magmas was the principal control on the PGE geochemistry of the cumulate sequences. Despite representing PGE-enriched, S-undersaturated second-stage melts similar to the parental (U-type) magmas for the ultramafic portions of the Bushveld complex, the boninites were unable to form a Merensky-reef type PGE deposit because they did not come into contact with S-saturated (A-type) magmas. In the absence of cumulus sulphides, the PPGE (Pt, Pd, Rh) were partitioned into the residual liquids, whereas the IPGE (Os, Ir, Ru) were strongly fractionated into early-formed olivine-chromite cumulates. These features are highlighted by the extremely low IPGE tenor of the boninites, and the relatively high IPGE tenor of the dunites in comparison to the more evolved cumulates. Three types of chromitites are recognised in the HRC. Type I and type II chromitites occur as magmatic schlieren which probably formed during replenishment events. Type III chromitites occur as layers, pods and irregular patches developed in an unusual xenolith-bearing plagioclase peridotite. It is interpreted to have formed due to mixing between ascending xenolith-bearing, hydrous intercumulus liquids and resident ultramafic magma along the floor of the magma chamber. Chromitite occurrences in the HRC are enriched in PGE by up to two orders of magnitude relative to their ultramafic host rocks, and most strongly-enriched in Ru and/or Pt and Rh. Their PGE tenor reflects the early crystallisation of laurite, followed by Pt and Rh sulpharsenides, in response to increasing S and As activities which developed primarily due to magma mixing. The low Os and Ir abundances in the chromitites is believed to reflect their formation from Os- and Ir-depleted boninitic magmas. The HRC and the Adamsfield complex were the world's major suppliers of Os-Ir-Ru alloys during the early part of this century. The alloys occur in alluvial deposits that are spatially associated with primitive olivine-rich cumulate sequences. The latter are commonly suspected to represent the source for the alloys, but recent exploration programs have yet to define a bedrock occurrence of Os-Ir-Ru alloys in Tasmania. The results from the present study provide important constraints on the genesis of these alloys. Silicate inclusions found in the alloys suggest that they formed at mantle temperatures and pressures and were transported to crustal magma chambers by boninitic magmas. The alloys may have crystallised during ascent, or alternatively, represent residual mantle phases which became incorporated into the boninites during partial melting. Most of the observations pertaining to the Os and Ir geochemistry of the HRC suggest that the alloys probably occur in thin magmatic concentrations that were deposited along the base of the intrusion from the most primitive of the boninitic magmas involved in the generation of the cumulate sequences. Future exploration should focus on delineating the cumulate products of these primitive magmas and specifically, in defining the horizons which demarcate fresh influxes of these liquids.
  • Item
    Thumbnail Image
    Exploring the palaeoclimate potential of South East Australian speleothems
    Green, Helen Elizabeth ( 2013)
    The paucity of palaeoclimatic data existing for the Southern Hemisphere and the regional bias of new data from the Northern Hemisphere has meant conclusions regarding the global response to the numerous climatic events of the last 20 kyr is both widely disputed and poorly understood. Despite being one of the Southern Hemisphere’s largest landmasses, Australia in particular displays a limited pool of palaeoclimatic information and the production of a new, robust record providing an insight into the response and timing of key climatic events is paramount to generating a more comprehensive characterisation and improved understanding of palaeoclimate in this region. Speleothems (cave deposits) are valuable archives of palaeoclimate variation, characterised by their extensive growth intervals and large geographic extent. They contain a multitude of ‘proxy’ records both directly and indirectly linked to climatic fluctuations and are typically robust, displaying high preservation potential with no post-depositional alteration. Key to their success is their amenability to radiometric dating, allowing the establishment of robust and reliable chronologies to which their multi-proxy records can be anchored. Consequently speleothems provide a clear opportunity to explore and expand palaeoclimatic knowledge at sites across the globe. This thesis describes and explains the use of state of the art technology to exploit relatively recent advances in U-series dating to construct reliable and detailed records of south east Australia’s response to palaeoclimatic fluctuations over the last 50 kyr using samples collected from cave sites from across the states of Victoria and New South Wales. 28 speleothem samples have been analysed in terms of both their coincident growth intervals and stable isotope variation to provide records with palaeoclimatic implications at a range of time scales. The production of a chronological template of speleothem growth intervals has enabled the assessment of south east Australia’s response to some of the key local and global millennial scale climatic events of the last glacial to interglacial transition and detailed stable isotope analysis of selected samples have been interpreted with the aid of a thorough cave monitoring programme, identifying increased variability in the region’s climate during the late Holocene. The palaeoclimatic records developed in this thesis represent a significant step forward in Southern Hemispheric palaeoclimatology. These records offer valuable new data for both palaeoclimatologists exploring south east Australia’s past climate and those investigating climatic fluctuations at a hemispheric to global scale. The high resolution and robust chronology of the records produced means that they provide a benchmark to which future records might be anchored.
  • Item
    Thumbnail Image
    The geology and geochemistry of the Agnew Intrusion: implications for the petrogenesis of early Huronian mafic igneous rocks in Central Ontario, Canada
    Vogel, Derek Christian ( 1996-07)
    The Early Proterozoic Agnew Intrusion is a well-preserved leucogabbronoritic to gabbronoritic layered intrusion that is a member of the East Bull Lake suite of layered intrusions (ca. 2490-2470 Ma) occurring in central Ontario. These intrusions are related to the development of the Huronian Rift Zone, which may be part of a much more widespread rifting event that involved the Fennoscandian Shield. Structural data suggest that these intrusions have been subjected to ductile deformation and are erosional remnants of one or more sill-like bodies originally emplaced along the contact between Archaean granitic rocks of the Superior Province and an Early Proterozoic Huronian continental flood basalt sequence in the Southern Province.
  • Item
    Thumbnail Image
    Geochronology and geochemistry of Cenozoic volcanism in relation to epithermal gold mineralisation in western Java, Indonesia
    Titisari, Anastasia Dewi ( 2014)
    Western Java in Indonesia is a well known gold deposit district that contains a number of world class ore deposits. The district hosts mainly low-sulphidation epithermal gold deposits and the most important gold deposits occur in the Pongkor, Cibaliung, Cikotok, and Papandayan districts. Although Java has a long record of volcanic activity, little is known of its pre-Pleistocene arc history, particularly in relation to the timing and geochemical evolution of the volcanic successions associated with ore mineralisation. Moreover, much of the available geochronological data for volcanic rocks in the region are based on imprecise K-Ar results. Therefore a combination of 40Ar/39Ar dating techniques and elemental geochemical methods (major and trace element analyses) have been utilised in the current project. Most of volcanic samples from the current study are characterised by enriched LILE and LREE compositions, which are characteristic of calc-alkaline arcs. However, Papandayan basaltic samples exhibit depleted LREE contents, typical of island arc tholeiites. The more enriched LILE and LREE compositions present in some Pongkor samples and Papandayan intrusive rocks, are indicative of high-K calc-alkaline and shoshonite arcs. Trends in Nb/Y, Th/Nb, Ce/Yb, and Ce/La(N) ratios reflect temporal evolution of the arcs, from: i) a primitive arc (low Nb/Y, Th/Nb, Ce/Yb and high Ce/La(N) ratios) characterised by the tholeiite basaltic samples; ii) an evolved arc (high Nb/Y, Th/Nb, Ce/Yb and low Ce/La(N) values) typified by the high K – shoshonite volcanic samples; and iii) a mature arc (with intermediate Nb/Y, Th/Nb, Ce/Yb and Ce/La(N) values) represented by the calc-alkaline volcanic samples. Trace element signatures of La and Ce suggest a broadly similar magma source for all rocks in the region. 40Ar/39Ar dating of volcanic rocks that host gold mineralisation are representative of the western Java magmatic arc, give the oldest age of ca. 18 Ma for the Papandayan district; ages ranging from ~11 Ma to ~9.5 Ma for the Cibaliung district, from ~18 Ma to ~4.5 Ma for the Cikotok district, and the youngest ages from 2.74 ± 0.03 Ma to ca. 2 Ma for the Pongkor district. Adularia crystallisation that is associated with western Java gold mineralisation shows 40Ar/39Ar ages from the oldest to most recent: ca. 18 Ma for the Papandayan district; from 12.44 ± 0.19 Ma to 9.39 ± 0.75 Ma for the Cibaliung district; 5.36 ± 0.46 Ma and 3.43 ± 0.04 Ma for the Cikotok district; and from 2.02 ± 0.03 Ma to 1.80 ± 0.03 Ma for the Pongkor district. Some host volcanic rocks have been affected by hydrothermal alteration, which has resulted in partial resetting of ages towards the time of gold mineralisation. Variation of the mineralisation ages suggests multiple generation of adularia growth in the mineralised veins. The dating results suggest that the magmatic arc across western Java are most likely linked to Southeast Asia tectonic evolution, from Early Miocene counter clock wise rotation of Kalimantan to Late Miocene – Pliocene subduction of the Eurasian continental plate beneath the Indo-Australian oceanic plate. The new and existing age data allow for a reconstruction of the western Java magmatic arc, with three main events identified: an Early Miocene primitive tholeiite arc (20 – 18 Ma), a Middle Miocene mature calc-alkaline arc (13 – 9 Ma) and a Late Miocene – Pliocene evolved high-K calc-alkaline and shoshonitic arc (7 – 2 Ma). The reconstruction indicates that the Early Miocene Papandayan low sulphidation epithermal system (with some indications of high sulphidation activity) is related to a basement comprising thinned island arc crust. In contrast the Miocene – Pleistocene low-sulphidation epithermal mineralisation system of the Cibaliung, Cikotok and Pongkor districts, which is associated with a calc-alkaline arc, was constructed on Sundaland continental crust.
  • Item
    Thumbnail Image
    Volatile and precious metal geochemistry of the Mount Isa ores and their host rocks
    McGoldrick, Peter John ( 1986)
    Geochemical and petrographic investigations of Pb-Zn-Ag mineralization (12 orebody) and Cu-Co mineralization (1100 orebody) from Mount Isa were undertaken. Over one hundred and twenty carefully selected samples were analyzed for major and minor elements and for some or all of the following volatile metals: Au, Ag, Cd, As, Sb, Se, Bi, Co and Tl. A strong Tl enrichment is observed in (pyritic) unmineralized lateral equivalents of 12 orebody for several kilometers to the north of the mine sequence. The Se and As contents, S/Se ratios and S isotope relationships in the Pb-Zn ores and their host pyritic shales preclude a magmatic or deep-seated hydrothermal S Source. The data suggest that sulfide S in the Urquhart Shales was derived from reduction of a “seawater”/evaporitic/pore water sulfate source. Lateral variations in the thickness of mineralized intervals, the nature of the sulfide-gangue textures in the ores, the pervasive K and Tl enrichment in the host rocks and other chemical features of the Pb-Zn ores indicate that much of the Mount Isa mineralization formed epigenetically within the unconsolidated Urquhart Shales. The Pb-Zn-Ag ores contain very little Au and it is argued that this feature is best explained by the hydrothermal solutions that formed the Pb-Zn ores being cool (<<200°C) and moderately oxidized. The “silica dolomite” (the host to all the Mount Isa Cu mineralization) formed from “normal” Urquhart Shale as a result of intense fault-related hydrothermal activity (Perkins, 1984). The alteration has silicified the shales adjacent to the fault, and dolomite, phyllosilicates and “immobile” elements liberated during the silicification have been re-deposited at higher levels up-dip in the silica dolomite bodies. For the most part primary sulfide textures have not been preserved. It is argued that the distribution of several elements (notably Co, Bi, As, Fe and S) in 1100 orebody and its location down-dip from a strongly pyritic section of Urquhart shale are good evidence that stratiform Co (and Cu) mineralization was present in pyritic Urquhart Shales prior to formation of the silica dolomite. Chemical and isotopic evidence suggest that the Cu mineralization had a similar S-source and formed from similar solutions to the Pb-Zn-Ag ores. A new co-genetic model for the Mount Isa Cu and Pb-Zn-Ag deposits in which the mineralization formed from cool oxidized solutions in the upper few meters of the unconsolidated Urquhart Shales is presented. The metal-bearing solutions were expelled from their source rocks (oxidized clastic sediments lower in the Moust Isa Group) during the course of normal basin compaction and dewatering. Base metal sulfides were fixed by sulfate reduction processes occurring in the diagenetic environment of the Urquhart Shales. Weathered mafic volcanic detritus may have been and important component of the source.
  • Item
    Thumbnail Image
    The geochemistry and geochronology of Tanzanian kimberlites
    Chesler, Rachel ( 2012)
    The Tanzanian Craton is host to numerous kimberlite intrusions, although few have been studied in any detail. Due to its proximity to the East African rift zone, this region also provides a unique opportunity to investigate the effect of rifting on kimberlite volcanism. To date, however, no geochemical studies have been conducted on Tanzanian kimberlites, largely due to their altered and weathered nature, and only four intrusions have published age constraints. This thesis seeks to redress these deficiencies by the application of modern high precision analytical techniques to the study of kimberlites from this previously neglected region. The study focused on 30 separate kimberlite intrusions located on the Tanzanian Craton. Due to their highly altered and weathered character, perovskite was used as a proxy to obtain geochemical and geochronological information on the host kimberlites. Perovskite is a common accessory mineral in kimberlites and contains substantial U, Sr and Nd and lesser amounts of Pb and Hf. Consequently, perovskite provides the means to determine both age constraints and initial isotopic signatures for the host kimberlites. Perovskite extracted from the Tanzanian kimberlites was utilised for U-Pb geochronology and analysed for trace element and Sr-Nd-Hf isotopic compositions. Similar to kimberlites worldwide, these samples show extreme enrichment in large ion lithophiles and LREE, whereas they are heavy REE depleted. They are characterised by moderately radiogenic 87Sr/86Sri compositions (0.70268 – 0.70476) and ɛSr values (-14.56 to 4.46), restricted 143Nd/144Ndi compositions (0.51138 to 0.51277) and ɛNd values (1.8 to 3.8), and very restricted 176Hf/177Hfi compositions (0.282058 to 0.282966) and ɛHf values (0.8 to 8.2). All samples plot within the range previously defined for Group I kimberlites. This study provides compelling evidence for the utility of perovskite analysis in highly altered kimberlitic samples that would otherwise be intractable to study. The ages obtained for these samples define two periods of kimberlite volcanism for the Tanzanian Craton. Early Mesoproterozoic kimberlites include the Itanana kimberlite (1083 Ma) and the previously dated Bubiki kimberlite (1097Ma). All other kimberlites for which ages were obtained are significantly younger, with ages ranging from 44-80 Ma. The latter group includes some of the youngest reliably dated kimberlites known; the Kikhomango (44 Ma) and X073 (47 Ma) intrusions. Ages from both the older and younger Tanzanian kimberlites coincide with periods of known kimberlite activity worldwide. Previous studies of the Tanzanian kimberlites have focused on the thermobarometry of garnet macrocrysts derived from disaggregated mantle xenoliths. Garnet compositions vary with proximity to the East African Rift, suggesting that the SCLM in this region was affected by rift related heating prior to kimberlite emplacement. If the source of these kimberlites was within the SCLM, systematic geographic variation in the isotopic and trace element compositions in relation to their proximity to the rift would be expected. This has not been observed in this study, with the entire region displaying no significant geographic variation in geochemical composition. Therefore the current results suggest a deeper source for the Tanzanian kimberlite magmas, below the influence of rifting in the region.
  • Item
    Thumbnail Image
    The timing and origin of orogenic gold mineralisation in the western Lachlan Orogen, southeast Australia: constraints from 40Ar/39Ar dating and halogen and noble gas geochemistry
    Fairmaid, Alison Maree ( 2012)
    The Ballarat East gold deposit (408t) is the second largest orogenic gold deposit in the Western Lachlan Orogen, southeast Australia. The western Lachlan Orogen is characterised by a thick package of Ordovician turbiditic sedimentary rocks overlying Cambrian oceanic volcanic sequences. The region was variably affected by multiple major deformation/metamorphism and magmatism events during the Cambrian to Devonian. The Ballarat East gold deposit is located in the Bendigo structural zone of the Western Lachlan Orogen and is hosted in Ordovician sediments of the Castlemaine Supergroup. Gold mineralisation in the Ballarat East deposit is sited in quartz and quartz-carbonate veins within goldfield-scale, west-dipping reverse faults. Two major lode types are present: 1) lode type ‘1’ is characterised by arsenopyrite-dominated quartz veins associated with early movement on reverse faults, whereas 2) lode type ‘2’ is related to structurally later, shallow east-dipping, pyrite-sphalerite-galena-white-mica dominated veins, emanating from reverse faults. Previous studies have suggested that gold mineralisation in the Western Lachlan Orogen occurred at ~440Ma, as a result of metamorphic devolatilisation reactions in the lower crust. However the age of mineralisation at the Ballarat East deposit is only broadly constrained to a period between 460 and 370 Ma, and the source of the gold-bearing fluids could include metamorphosed volcanic rocks, sedimentary rocks and/or granites. In order to provide a more robust chronological framework for gold mineralisation at the Ballarat East deposit, several samples of detrital and hydrothermal potassium-rich minerals were collected and analysed by 40Ar/39Ar dating. In addition, fluid inclusions in portions of quartz and quartz-carbonate veins were characterised by micro-thermometry and halogen/noble gas isotopic tracer methods to further constrain the source(s) of the gold mineralising fluids. The 40Ar/39Ar data obtained from detrital muscovite grains yield ages between 530 – 460 Ma and are concordant with previously published detrital ages. The vein muscovite/sericite ages fall into three age groupings as follows: 445 – 435 Ma (lode type ‘1’), 420 – 415 Ma (lode type ‘2a’) and 380 – 370 Ma (lode type ‘2b’). The gold-bearing quartz veins (from both lode types) contain low salinity (average 4 wt.% NaCl eq.) aqueous H2O inclusions and mixed H2O-CO2 fluid inclusions. Fluid inclusion 40Ar/36Ar values range from 322 (close to Air Saturated Water; ~296) up to a maximum of 4503, and 40Ar/36Ar is strongly correlated with Cl/36Ar. Fluid inclusions have variable Br/Cl values between 1.66 10-3 and 2.91 × 10-3 and I/Cl values between 153 × 10-6 and 501 × 10-6, with a strong correlation between Br/Cl and I/Cl. The fluid inclusion 84Kr/36Ar and 129Xe/36Ar values are variable but show a systematic enrichment in the heavier noble gases. The 40Ar/39Ar ages suggest gold mineralisation at the Ballarat East deposit occurred in three main episodes at ca. 445 Ma, ca. 420 Ma and ca. 380 – 370 Ma. All episodes of mineralisation are associated with fluid inclusions of similar composition. This fluid is suggested to reflect a deeply sourced fluid, possibly originating by devolatilisation of altered volcanic rocks (e.g. basalts). In this scenario, the fluid would have acquired additional noble gases and organic Br plus I by interaction with sedimentary rocks, including organic-rich shales that are found beneath and surrounding the deposit. The data are compatible with genetic models for orogenic Au in which gold mineralisation was initiated by metamorphic devolatilisation in the lower crust, linked to Lachlan Orogenesis at ca. 440 Ma.