School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 21
  • Item
    No Preview Available
    Antarctic sea ice and its interactions with high latitude weather and climate
    Watkins, Andrew Bruce ( 1998)
    Antarctic sea ice plays a major role in the earth system by greatly influencing the high latitude exchanges of heat, moisture and momentum between the ocean and atmosphere, as well as profoundly effecting the salt budget of the ocean, and thus the production of Antarctic Bottom Water, one of the driving mechanisms of worldwide oceanic circulation. With such considerable and far reaching impact, it is important to document its climatology, understand its variability and quantify its influence. Climatologies and trends of the Southern Ocean sea ice pack are presented using the most recent satellite observations available from the Defense Meteorological Program’s (DMSP) Special Sensor Microwave Imager (SSM/I). The analysis of these data show that Antarctic sea ice is highly variable in both time and space. Statistically significant increases in the sea ice extent, open water and ice areas have been determined from the SSM/I data for the 9 year period 1987 to 1996, a result which differs from the Scanning Multichannel Microwave Radiometer (SMMR) observations (1978-1987). The increasing trend in the SSM/I observations can be attributed to the large increases in sea ice observed in 1994-1995, as confirmed by an analysis of data from the ERS-1 satellite. The mean season length during these years has remained relatively unchanged. Regional trends, both in the sea ice concentration and in season length, showed vast spatial inhomogeneity. SSM/I data displayed increasing season length in the central Weddell Sea, Bellingshausen Sea and Balleny Islands regions, with decreasing length in the Amundsen Sea, eastern Ross Sea and in the coastal areas off Wilkes Land. Similar trends are observed in the seasonal sea ice concentration. In most cases, these trends are opposite to those observed in the SMMR data, which may be linked to the shift observed in the Amundsen Sea low after 1990. Comparisons with historical data would suggest that no large scale anomalous change has occurred in the Antarctic sea ice limits over the course of human observation. Furthermore, the degree of variability suggests great care is needed in interpreting large scale changes in sea ice conditions, and hence atmospheric or oceanic change, from locally observed anomalies. Case studies of the effect of individual cyclones upon the sea ice concentration show small but definite modification of the ice conditions. To further diagnose aspects of the thermodynamic and dynamic forcing upon the Antarctic pack, detailed analysis of the sea ice concentration variability has been conducted using spectral techniques, and the spectra have been compared to those of the European Centre for Medium Range Weather Forecasts (ECMWF) temperature and wind data. In all cases, and with the seasonal cycle removed, the sea ice concentration shows a bias towards longer timescales of variability than either the wind stress or surface air temperature. This “red shift” in its frequency spectrum is strongest with the wind stress, and weakest with the temperature. For longer period waves, this may be due to the formation of new ice by surface cooling or the moderation of melting by the cold surface water, whereas for shorter period waves, where wind stress dominates temperature and ice concentration respectively, time is required for winds to draw in warmer or cooler air, as well as to overcome the ice masses inertia and keel friction to open or close leads. Strong intraseasonal variability of the sea ice concentration is observed in the 20-25 day period, reflecting similar timescales of the temperature variability, as well as that of the energetic eddies of the Antarctic circumpolar current. Examination of the latitudinal variation of the sea ice concentration, temperature and wind stress spectra showed not only the importance of the north-south temperature gradient in influencing the variability, but also the seasonal changes in the semi annual oscillation of the circumpolar trough. Regional spectra showed clear differences between location, and reflected the influences of the atmosphere and ocean upon the sea ice pack. This is clearly shown in the Weddell Polynya region and off East Antarctica, with high variability in the synoptic timescales, and in the western Ross Sea where changes occur in timescales of greater than 20 days. In order to determine if satellite derived, real time sea ice concentration and distribution would be of benefit to operational numerical weather prediction (NWP) schemes, the effect of sea ice concentration change upon the atmosphere in synoptic timescales was examined using a general circulation model in conjunction with the Australian Bureau of Meteorology’s GASP analyses. Experiments were conducted with a typical July sea ice concentration and distribution, as well as slab concentrations of 0, 10, 25, 50, 80 and 100%. Results from 5-day numerical weather forecasts show that the central pressure, structure and tracks of individual cyclones are sensitive to the ‘switch on’ of different sea ice conditions. Composites of all forecasts made with each concentration showed considerable, and mostly statistically significant, anomalies in the surface temperatures and turbulent heat fluxes over the sea ice. The magnitudes of these changes varied monotonically with the area of open water. The largest changes were simulated closest to the coast for all concentrations except for the typical July sea ice run, which displayed maxima over the outer pack. Significant westerly anomalies were induced over the ice in all cases, as were reductions in mean sea level pressure. The July sea ice runs displayed a distribution of the mean sea level pressure anomaly different from all others, with maxima occurring in the central to outer pack. All other forecasts displayed maxima at the coast. The results suggest that sea ice concentration does induce anomalies in the atmospheric parameters in timescales of less than five days. Further, the use of a realistic distribution of sea ice concentration produces results distinct from the constant concentration forecasts. Hence it is suggested that real time Antarctic sea ice data may be of considerable benefit to numerical weather prediction models.
  • Item
    Thumbnail Image
    Altitudinal distribution of vegetation in the headwaters of the Wongungarra River, Victoria
    WATSON, FRED ( 1993)
    Changes in vegetation composition with respect to altitude were investigated in the sclerophyllous forests of the Australian mountain region. Vegetation was surveyed at 148 sites along two transects which were located to maximise variation in altitude and minimise the influence of environmental factors not directly related to altitude. The measurement, simulation, and estimation of environmental variables revealed that this aim was met except at the end-points of the transects where secondary influences are present.
  • Item
    Thumbnail Image
    The geology and geochemistry of the Agnew Intrusion: implications for the petrogenesis of early Huronian mafic igneous rocks in Central Ontario, Canada
    Vogel, Derek Christian ( 1996-07)
    The Early Proterozoic Agnew Intrusion is a well-preserved leucogabbronoritic to gabbronoritic layered intrusion that is a member of the East Bull Lake suite of layered intrusions (ca. 2490-2470 Ma) occurring in central Ontario. These intrusions are related to the development of the Huronian Rift Zone, which may be part of a much more widespread rifting event that involved the Fennoscandian Shield. Structural data suggest that these intrusions have been subjected to ductile deformation and are erosional remnants of one or more sill-like bodies originally emplaced along the contact between Archaean granitic rocks of the Superior Province and an Early Proterozoic Huronian continental flood basalt sequence in the Southern Province.
  • Item
    Thumbnail Image
    The development of a high quality historical temperature data base for Australia
    Torok, Simon James ( 1996)
    A high quality, historical surface air temperature data set is essential for the reliable investigation of climate change and variability. In this study, such a data set has been prepared for Australia by adjusting raw mean annual temperature data for inhomogeneities associated with station relocations, changes in exposure, and other problems. Temperature records from long-term stations were collaborated from the set of all raw data held by the Australian Bureau of Meteorology. These long-term records were extended by combining stations and manually entering previously unused archived temperature measurements. An objective procedure was developed to determine the necessary adjustments, in conjunction with complementary statistical methods and station history documentation. The objective procedure involved creating a reference time series for each long-term station, from the median values at surrounding, well-correlated stations. Time series of annual mean maximum and mean minimum temperatures have been produced for 224 stations, and the adjusted dataset has been made available to the research community. The adjusted data are likely to be more representative of real climatic variations than raw data due to the removal of discontinuities. The adjusted data set has been compared with previously used temperature data sets, and data sets of other parameters. The adjusted data set provides adequate spatial coverage of Australia back to 1910. Additional adjusted data are available prior to this date at many stations. Trends in annual mean maximum, minimum, the mean of the maximum and minimum, and the range between the maximum and minimum, have been calculated at each site. Maximum and minimum temperatures have increased since about 1950, with minimum temperatures increasing faster than maximum temperatures.
  • Item
    Thumbnail Image
    Geology and tectonothermal history of The Fishery Bay Region, Eyre Peninsula, South Australia
    Elliott, Andrew R. ( 1998)
    The Fishery Bay region, southern Eyre Peninsula, South Australia, consists of Archaean charnockitic and paragneissic sequences of the Sleaford Complex intruded by Palaeoproterozoic granitoids and two generations of mafic dykes. These rocks preserve the deformational and metamorphic effects of the Kimban Orogeny and the later Wartakan Event. Within the Fishery Bay area, five separate ductile deformation events (D1-D5) are recognised, the dominant of which (D2-D3) are associated with granulite facies metamorphism. The effects of the D3 event are pervasive throughout the Fishery Bay region, with D1 and D2 preserved only in regions of low-D3 strain. The overprinting nature or D3 is recognised in the reorientation of D2 structures. The dominant response of the area to D3 strain is a series of westerly-dipping dextral oblique reverse shears with west block-up movement. Much of the strain is localised within the paragneisses and along the margins of mafic dykes recognised in the development of a NNE-trending D3 high-strain zone termed the Cape Wiles Shear Zone. D3 observations from the Fishery Bay region correlate well with previous studies conducted on southern Eyre Peninsula which lead to the inference that D3 west block-up exhumation is responsible for the positive pressure gradient that exists from west to east across the Kalinjala Shear Zone. The pressure-temperature conditions preserved in the mineral assemblages of the paragneiss units and mafic dykes record two granulite facies metamorphic events, M2 and M3. Mineral assemblages associated with M2 and M3 are similar and passage from M2 to M3 did not result in reaction textures which indicates the proximity of the thermal conditions of these two metamorphic events. M2 corresponds to the second deformational event (D2) where peak metamorphic conditions reached pressures of 8.6±3.2 kbar at 750-900°C, The second thermobaric event correlates with the third deformation event (D3) and a metamorphic peak of 4.1±1.9 kbar at 750-850°C. The decompression of the Fishery Bay region during D3/M3 is synchronous with crustal thickening of the terrain east of the area.
  • Item
    Thumbnail Image
    Australian lineament tectonics: with an emphasis on northwestern Australia
    Elliott, Catherine I. ( 1994-08)
    Australia is transected by a network of systematic continental-scale lineaments that are considered to be zones of concentrated, aligned tectonic activity which have apparent continuity over vast distances. The influence of lineaments on the rock record can be identified in many types of data-sets, and existing data reveals previously undescribed basement influences. Several continental-scale lineaments can be traced offshore with apparent continuity for hundreds to thousands of kilometres, two of which are seen to cross the Tasman Sea in offshore eastern Australia. Geological and chronological evidence demonstrates that many of the lineaments have been zones of reactivation since at least the Early Proterozoic (- 1880 Ma) and that they appear to cross major terrane boundaries. Alternative models for their origin are a) a pre-existing lineament network maintained in an ancient basement underlying the entire continent; b) lateral propagation of crustal-scale structures; c) alignment of genetically unrelated lineaments giving the appearance of continuity. Australian deep-seismic profiles show that continental-scale lineaments are zones of crustal-scale structure which in some cases transect the crust-mantle boundary. Lineaments demonstrate many faulting styles, e.g. listric extensional (G3), planar moderate-angle thrusts (G2 l), and sub-vertical thrusts (G 17). In some cases the structural style varies laterally along the length of the lineament. (For complete abstract open document)
  • Item
    Thumbnail Image
    Recent glacier and climate change in the New Zealand Alps
    Ruddell, Andrew Reginald ( 1995-07)
    The sensitivity of glaciers in the Southern Alps of New Zealand is evaluated to identify the nature of recent climate change. Past glaciological observations are compiled and to these are added 4 summer field seasons on the Tasman (including Hochstetter), Dart, Fox and Franz Josef Glaciers. The field data are an important aspect in the calibration and verification of glacier modelling. The detailed studies of these glaciers provides the basis for assessing the glacier and climatic changes over the whole glacierized region. (For complete abstract open document)
  • Item
    Thumbnail Image
    Deformation and the thermobaric history of the eastern coast of Williams Island
    Marks, Bianca ( 1997)
    Williams Island is located off the southern coast of the Eyre Peninsula of South Australia where the Palaeoproterozoic rocks of the Lincoln Batholith intrude a portion of an Archaean basement complex. The structures of the eastern coast of Williams Island are controlled by the rheological contrast between the mafic dykes and the felsic granite gneisses that comprise the batholith. Planes of rheological weakness exist at the dyke margins along which strain is localised. The plane of failure and the kinematics along it depends upon the orientation of the dyke with respect to the stress field. Displacements at cross-cutting dyke margins indicates the occurrence of three significant deformation events, D 1, D2 and D3. By comparison, the D1 is localised to a region of outcropping Jussieu Dykes, the D2 is pervasive and the D3 is confined to the discrete Northern and Southern Shear Zones. Associated with the latter two deformations is an increase in temperature and strain rate which controls the relative strength of the metabasic and the granite gneiss rocks. Brittle extensional structures, such as boudinage, form when the mafic dykes behave in a more competent manner relative to the host, whereas ductile extensional features, like pinch and swell, infer a greater homogeneity between the rock types. The rheological contrast is inverted with a preferential increase in strain resulting in granite boudinage. The D2 fabrics arc predominantly defined by a granulite two-pyroxene assemblage and the structural elements of D3 are characterised by minerals associated with amphibolisation. Average pressure calculations of representative assemblages give 7 ± 1 kbar for M2/D2 and 12 ± 2 kbar for M3/D3, which suggests crustal thickening over D2 - D3 time. Exhumation of the crustal block therefore occurred after peak D3.
  • Item
    Thumbnail Image
    A structural analysis of Wanna, South Australia: the comparative behaviour of Mafic dykes and granite during deformation
    Bales, Thomasin ( 1996)
    Strain localisation that produces varying foliation development, folding, and patterns of boudinage has led to structural features within, and between, the two main lithologies at Wanna, South Australia at amphibolite facies, these lithologies being the megacrystic granite gneiss of the Donington Granitoid Suite, and the Tournefort dykes which cross-cut the gneiss. The structural elements differ between, and within each lithology-for example, the megacrystic granite gneiss has a reasonably pervasive foliation, whereas deformation features in the Tournefort dykes tend to be localised into areas of high strain. Cross-cutting relationships are used to constrain the temporal relationships between structural elements, and the development of the different structural features explained in terms of rheological behaviour of the lithologies. The relative rheological behaviour of the principal lithologies was thus found to vary over space, as well as over time. Geothermometry of mafic assemblages was used to constrain the temperatures at which different structural features developed, which were all found to be in the order of about 720°C and occurring under fluid-rich, upper amphibolite conditions.
  • Item
    Thumbnail Image
    Geochemistry and mineralisation of primary and secondary platinum-group elements in the ultramafic "Alaskan-type" Owendale complex and laterites in the Fifield Region, New South Wales, Australia
    Shi, Bielin ( 1995)
    The Owendale Complex belongs to a family of ultramafic-mafic intrusions that is characterised by a zonal, nonstratiform arrangement of the principal ultramafic units. The ultramafic rocks of the Owendale Complex are virtually identical to many of the Alaskan-type intrusions, however the associated gabbroic rocks (wehrlites) are K-rich and Si-undersaturated, in contrast to the tholeiitic gabbroic rocks of the Alaskan examples. The intrusion history of the Owendale Complex is thought to have involved emplacement of a gabbroic intrusion that was invaded by an ultrabasic magma, possibly while the former was still only partly solidified. Emplacement of both magmas probably occurred during Late Devonian tectonism and deformation synchronous with emplacement and crystallisation is necessary to explain the present non-stratiform arrangement of the rock units. The most obvious linkage factor between the two proposed parent magmas (gabbroic and ultrabasic) of the Owendale suites is their mutual affinity with tholeiitic basalt magmas and the similarities of their products with intrusions of alkalic basalt derivation. This suggests the possibility that the Owendale Complex rocks and those of other tholeiitic intrusions of the regions are comagmatic products of an ancestral magma that may have also produced the widespread assemblage of complexes. Viewed from this perspective, the ultramafic rocks of Owendale Complex would thus represent a very minor product of a period of regional magmatic activity. Most alloys, erlichmanite, cooperite and some grains with exclusion texture of Pt-Os-Ir-Pd-Rh are considered to represent a primary high-temperature paragenesis. Concentration of PGE in pegmatoidal units of dunite-wehrlite is explained by the accumulation of platinum-rich alloys that segregated directly from the melt at an early stage in the evolution of the complex. The high-temperature PGM segregate directly from a silicate melt and were not generated by exsolution from spinels or magmatic sulphides. These suggest that fS2 was generally low (subordinate sulphide formation) and, after some influence at the beginning, has given way to rising fO2 (chromite, olivine and Pt-Fe-Cu-Ni alloys formation). After lithification, the ultramafic rocks become subject to "reducing" conditions, i.e., conditions of lower O2 and S2 activities. Ni-Fe alloys, native Fe and Bi formed in cracks which filled the serpentine matrixes. The former PGM (erlichmanite, cooperite and Pt-Fe alloys) were exposed to the reducing conditions via cracks were desulphurated to form porous cooperite with Pt-Fe alloys and multiphase textural Os-Ir-Ni, Pt-Ir aggregates. It is plausible that the veinlets and aggregates of unnamed Rh-Sb-S, (Pt, Ir)2(Fc, Cu)3(S, Sb, AS)3 in the dunites may also have been formed by reduction of Ni-rich sulphides and erlichmanite, Pt-Fe alloys or cooperite. Late PGM are dominated by sperrylite-geversite solid solution resulting from the reaction of early PGM with a fluid phase. A hydrothermal origin is also indicated for native Fe, native Bi and awaruite (NiFe) and the base-metal sulphides (pentlandite, chalcopyrite, sphalerite, arsenopyrite, pyrite, pyrrhotite, and some Ni-Co-Fe sulfide). The cause of the reducing conditions may have been related to H2 production accompanying hydrous alteration of the dunites and clinopyroxenites. The laterites overlying the ultramafic complexes in the Fifield region are exceptionally well-developed and well-preserved weathering profiles. Field, textural and geochemical data all support a chemical weathering origin for the profiles and compatible with meteoric and ground water origins. Meteoric water with intermediate Eh and pH and negligible dissolved species sinks into the laterite where these parameters are modified. The Eh rises and pH decreases to the conditions typical of lateritic soils and the concentration of dissolved species increases. In this state the water is able to take PGE and Au into solution from a finely disseminated form in the bedrock as a part of the process of lateritisation. When the soil solution transports the PGE and Au towards a transitional interface must exist between the ferruginous and saprolite zones with lower Eh, neutral pH and lower concentration of dissolved salts. At this transitional region, deposition of the PGE and Au occurred. The presence of magnetic Pt-Fe-Cu-Ni alloys suggests that hydrothermal solutions play a later role in the Fifield region, and the alloys have grown in situ in a lateritic soil by a process involving laterite water solution in the high Eh, low pH conditions prevalent in such soil, followed by deposition when the conditions become less extreme. Some examples of the Pt-Fe alloys from such an environment become frequently strongly magnetic with larger size. It is assumed that the temperature of the hydrothermal solution is in the range of 300° - 500° C (Bowles, 1990). PGE mineralisation in the primary rocks and laterite in this region has demonstrated a good example of multi-stage process mineralisation including primary high temperature magmatic formation; low temperature postmagmatic hydrothermal alteration and residual lateritic enrichment.