School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    The response of nonlinear feedbacks associated with the Indian Ocean Dipole to global warming
    NG, BENJAMIN ( 2015)
    The Indian Ocean Dipole (IOD) is an interannual mode of variability in the tropical Indian Ocean which has the potential to severely impact the surrounding countries. A prominent feature of the IOD is its positive skewness, where positive IOD events tend to be larger than negative events resulting in stronger impacts. Models from the Coupled Model Intercomparison Project phase 5 (CMIP5) show a threefold increase in the frequency of extreme events by 2100. However, the contribution of feedbacks associated with the IOD to this skewness and how they respond to increasing greenhouse gases are not well understood. The nonlinearity of four feedbacks (the Bjerknes feedback, sea surface temperature (SST)-cloud-radiation feedback, wind-evaporation-SST feedback, and nonlinear dynamic heating) was investigated and their responses to a warmer climate examined using CMIP5 models. A single model was first used to examine the nonlinearity of the four feedbacks, allowing the cause and effect of each feedback process to be determined. Following this, the analysis was applied to a multi-model ensemble to determine the cause of positive IOD skewness. The role of nonlinear dynamic heating in increasing the frequency of extreme events was then examined. This provides a better understanding of IOD dynamics and future behaviour. The positive Bjerknes feedback controls IOD skewness through the thermocline feedback. In a warmer climate, models show that the skewness of the IOD weakens and the asymmetry of the thermocline feedback displays a significant relationship with this reduced skewness. This decreased asymmetry occurs due to the mean state change of the tropical Indian Ocean where the Walker circulation exhibits weakening. The weaker mean westerly winds allow the climatological thermocline to shoal in the east, reducing the asymmetry of the thermocline feedback and thereby IOD skewness. The other feedbacks do not show as strong a relationship with IOD skewness. The negative SST-cloud-radiation feedback shows stronger damping of positive IODs and this is detrimental for IOD skewness. Under greenhouse warming there appears to be a shift amongst most models, with weaker damping of positive IODs and stronger damping of negative IODs. This is unfavourable for the reduction in skewness that occurs under increasing greenhouse gases. The positive wind-evaporation-SST feedback is not well simulated in coupled models. Therefore the relationship between IOD skewness and the wind-evaporation-SST feedback is uncertain and there does not appear to be a significant change in the asymmetry of this feedback in a warmer climate. Nonlinear dynamic heating involves advection of heat by oceanic currents, reinforcing positive IODs but damping negative IOD events. Amongst the models analysed, this process does not appear to contribute significantly to IOD skewness; however it does play an important role in the generation of extreme events and the projected increase. Nonlinear zonal and vertical advection during moderate events becomes more extreme-like due to the mean state change of the tropical Indian Ocean. This means that conditions during future moderate positive IOD events are similar to present-day extreme events, facilitating the projected increase of extreme positive IODs in a warmer climate.