School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Stratigraphy and sedimentology of Cryogenian carbonates, Flinders Ranges, South Australia
    Fromhold, Thomas Alexander ( 2011)
    The Adelaide Geosyncline of South Australia contains a Neoproterozoic-aged sedimentary succession consisting of a complex accumulation of sedimentary formations and units recording a diverse and unique depositional record. A detailed stratigraphic and sedimentological investigation of the interglacial period within the Cryogenian-aged Umberatana Group of the Northern and Central Flinders Ranges reveals a complex array of sedimentary successions lying between the Sturtian and Marinoan glacial deposits. In the Northern Flinders Ranges a major unconformity separates the Sturtian and Marinoan-aged sedimentary successions in the area. This forms a sub-aerial erosion surface with terrestrial and marginal marine sediments directly above the Angepena and Balcanoona formations in their respective localities. This exposure surface is here correlated with the previously documented submarine unconformity between the Yankaninna Formation and the underlying deep marine Tapley Hill Formation. This erosional event provides a chronostratigraphic marker horizon that coincides approximately with the previously defined Sturtian-Marinoan time series boundary in the Northern Flinders Ranges. These stratigraphic relationships also constrain lateral facies relationships between the Oodnaminta Reef Complex (Balcanoona Formation) and the Angepena Formation. Similarly, the shallow water Weetootla Dolomite is correlated with the deeper water carbonates of the Yankaninna Formation. In the Northern Flinders Ranges the Angepena Formation occurs as a marginal marine red-bed succession consisting of supratidal mudstones which are interbedded with subtidal and intertidal carbonates. The Angepena Formation is interpreted as a coastal mudflat succession that formed as a shoreward, laterally equivalent facies of the extensive carbonate platforms (reefs) of the Balcanoona Formation. Sedimentological and geochemical investigation of the Angepena Formation reveal that the unit contains a diverse accumulation of shallow marine carbonates including ooidal sands, tepee buckled algal mats, intraformational breccia (palaeo-caliche) and fenestral-bearing microbial deposits. The stratigraphic and sedimentological relationship within the interglacial successions of the Umberatana Group of the Northern Flinders Ranges are found to extend well over a hundred kilometres southwards into regions of the Central Flinders Ranges. The post-glacial Sturtian-aged Tapley Hill Formation records a near-identical depositional record to the Tapley Hill Formation of the Northern Flinders Ranges. In the Central regions, the Tapley Hill Formation is overlain by deep-marine carbonates and calcareous shales of the Wockerawirra Dolomite and Sunderland Formations respectively. The base of the Wockerawirra Dolomite is defined by an erosional surface, which is directly correlated to the unconformity found overlying the Tapley Hill Formation in the Northern Flinders Ranges (Sturtian-Marinoan series boundary). This stratigraphic relationship indicates the Wockerawirra Dolomite and Sunderland Formations of the Central Flinders Ranges are direct correlatives of the Yankaninna Formation of the Northern Flinders Ranges. The regionally widespread carbonate platform complexes of the Balcanoona Formation in the Northern Flinders Ranges preserve a unique history of the depositional record within the middle Umberatana Group of the Adelaide Geosyncline. Cessation of reef development coincides with a major regression event situated immediately below the Sturtian-Marinoan boundary. The regional consistency of the stratigraphic features found at the Sturtian-Marinoan boundary (i.e. unconformities) suggests that regional scale mechanisms, such as glacio-eustasy, were probably active during this otherwise ‘interglacial’ succession of the Cryogenian-aged Umberatana Group.