School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    The Permian glacial sediments of central Victoria and the Murray Basin: their sedimentology and geochemistry
    O'Brien, Philip Edward ( 1986)
    This study investigates the sedimentology and geochemistry of Permian glacial sediments cropping out in the Bacchus Marsh and Derrinal areas in central Victoria and in the subsurface beneath the Cainozoic Murray Basin in Victoria, New South Wales and South Australia. Facies analysis of the Bacchus Marsh Formation, based on a critical review of literature on glacial sedimentary processes and environments, identifies the following major facies groups: 1. Subglacial tillites deposited beneath wet-based ice. Some of these tillites exhibit structures indicative of a number of subglacial processes such as frictional lodgement of large clasts, subglacial bed deformation, subglacial meltwater flow and subglacial size sorting of clasts. Other subglacial tillites are essentially structureless. 2. Bedded diamictites to sandstones deposited predominantly by ice-rafting of debris into standing water. 3. Fluvial outwash sandstone and conglomerate facies that are finer-grained than typical proglacial outwash facies. 4. Deltas and subaqueous outwash fans vary from sandy sediments deposited by proglacial and subglacial streams to coarse, poorly sorted complexes deposited as debris aprons close to the ice front. Abundant underflow deposits suggest that less than normal marine salinities prevailed in these water bodies, even if they were arms of the sea. 5. Supraglacial tillites consisting of sandy diamictites to pebble conglomerates. Facies in the thickest sequence in the Bacchus Marsh area suggests that the area was covered by a major ice mass at least 8 times. Minor glacial advances took place during predominantly ice-free periods. The Derrinal Formation consists of a basal unit of predominantly subglacial tillite deposited in shallow glacially excavated valleys overlain by a complex of subglacial and supraglacial facies deposited by about 8 minor advances of a small ice tongue. Facies relationships in this part of the sequence are confused by intense deformation of the sediment pile during the melting of buried ice and dewatering of saturated diamictons. A major ice advance then overwhelmed the area depositing thick subglacial tillite. The Urana Formation, beneath the Murray Basin, is dominated by marine ice-rafted diamictite and mudstone. Rhythmically bedded siltstone and claystone, sediment gravity-flow deposits, traction-current deposits, and, possibly, subglacial tillites are also present. Facies assemblages in some drill holes indicate areas that were never covered by grounded glacial ice. Sedimentological and palaeontological evidence suggests that the Urana Formation was deposited towards the end of the glaciation. Ice motion indicators and ice sheet limits inferred from the facies assemblages in the Urana Formation are used to estimate the thickness of the ice over central Victoria during glacial maxima. These estimates support the conclusion drawn from the facies analysis that the ice was a large ice sheet. Comparisons of ice movement directions for central Victoria and formerly adjacent parts of Gondwana suggest that a large ice sheet was centred in North Victorialand. Major and some trace elements analyses of the clay component of marine and non-marine diamictites were used to test a number of methods of distinguishing marine from nonmarine glacial diamictites. None of the methods were clearly successful because sediment detrital mineralogy dominates the geochemical composition though V/Cr ratios may be useful in some circumstances.
  • Item
    Thumbnail Image
    The geology, petrology and geochemistry of the Otway formation volcanogenic sediments
    Duddy, Ian Ross ( 1983)
    The geology, petrology and geochemistry of the Early Cretaceous Otway Formation have been investigated in detail and used to determ ine the nature of the source rocks and to develop a model for the diagenetic and low-grade metamorphic readjustments. The fluviatile Otway Formation was deposited in continental rift grabens that stretched some 1000 km along the southern coast of Australia during the Early Cretaceous. The main areas of deposition in the Otway, Gippsland and Bass Basins contain an estimated 100,000 cubic kilometres of detritus. The major part of this detritus was derived from pyroclastic material which has been shown by the fission track dating studies to have been derived from contemporaneous volcanism. The pile of volcanogenic material comprising the Otway Formation is at least 3 to 4 km thick in the main basins. The sediments are entirely non-marine and were deposited by large scale multichannel streams cut in extensive floodplains. The streams deposited thick multistorey channel sandstones in sheet-like bodies and a diverse spectrum of overbank mudstones and fine-grained sandstones. The complex channel sandstones fine upwards but have numerous erosional breaks indicating repeated flood cycles. Whereas the channel deposits have internal features consistent with braided stream channels the overall system has a large proportion of floodplain which was been considered in the past to have been a feature of meandering channels. The oversupply of volcanogenic detritus is considered to have been responsible for the development of the multiple channel depositional system in a climate of high seasonal rainfall. Whole rock chemical analyses of all lithologies in the sedimentary suite, recalculated i.nto a set of normative minerals, have proved useful in the distinction and description of sedimentary rocks in general. P20S was found to be useful for the identification of Early Cretaceous soil forming processes. The study of the chemical composition of detrital minerals has demonstrated the usefulness of this approach in the identification of the nature of the source magmas of volcanogenic sediments. For the Otway Formation, analyses of clinopyroxenes, amphiboles, feldspars and sphene in particular, have shown that high potassium dacitic to shoshonitic volcanism dominated during Early Cretaceous rifting. The new data on the geology and mineralogical and chemical features of the Otway Formation have application to the study of diagenesis and low-grade metamorphism in volcanogenic sediments in general. (From Abstract)
  • Item
    No Preview Available
    The geology and petrology of the Lower Devonian Buchan Group, Victoria
    Husain, Farhat ( 1981)
    This study is devoted to a detailed examination of the stratigraphy and petrology of the late Lower Devonian (Emisan) Buchan Group, an essentially carbonate sequence. The Buchan Group begins with the lenticular Spring Creek member of the Buchan Caves Limestone. This consists of terrigenous clastic sediments derived from erosion of the underlying Snowy River Rhyodacites. Lithologies range from conglomerates and breccias with rhyodacite pebbles, through arkosic sandstones to quartz sandstones and shales. Pyroclastics, previously identified in this unit, are absent. The Spring Creek member changed from non-marine to marine as the main transgression became established and was followed by a change to carbonate deposition.