School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    The hydrogeology of the Gippsland Basin, and its role in the genesis and accumulation of petroleum
    Nahm, Gi Young ( 2002)
    The Gippsland Basin of southeastern Australia is the most energy-rich basin of Australia producing petroleum, gas and brown coal. Three-quarters of the Basin lies offshore and the rest onshore. The basin was initiated as a rift valley, caused by the separation of the Australian continent from the Antarctic followed by a number of tectonic events throughout the basin history. Early Cretaceous sedimentary rocks form the basement, which is in turn covered with Late Cretaceous to Recent sediment of sand, clay, limestone, and brown coal seams. The total thickness of the in-filling sediments offshore attains up to 6000 m, but onshore is up to 1200 m. There are three main acquifer systems, the Hydrostratigraphic Units 2, 4, and 7, all of which are confined. The two lower aquifer systems, Units 4 and 7, contain high temperature groundwater. It is generally agreed that the hydrocarbons offshore have been derived from terrestrial matters including brown coal and ligneous clay offshore. In the present study, the author has developed a case that hydrocarbons offshore being derived not only from the offshore source but also from onshore brown coals and coaly matter and in this hydrocarbon forming processes, groundwater has played a significant role. The Central Deep, in particular, provides favourable conditions for hydrocarbon maturation. Throughout the basin history, the Central Deep has experienced the oil window temperatures. In supporting this hypothesis, geochemical studies on groundwater, brown coal, and hydrocarbons as well as hydrodynamics are presented.