School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    The platinum-group element geochemistry and petrogenesis of the Heazlewood River mafic-ultramafic complex, Tasmania
    Peck, David C. ( 1990)
    The Heazlewood River mafic-ultramafic complex (HRC) comprises well-layered olivine- and orthopyroxene-rich cumulates, gabbronorite dykes, tonalites and low-Ti tholeiitic basalt and boninite lavas. The complex was emplaced as part of a large, low-angle thrust sheet during the middle Cambrian and subsequently deformed during the Devonian, so that the original stratigraphical relationships are obscured. The cumulate succession incorporates two distinct blocks, viz. the western HRC, comprising primitive adcumulates, and the eastern HRC, consisting of more evolved orthocumulates and mesocumulates. These two cumulate blocks are interpreted to represent stratigraphically equivalent parts of a single magma chamber. In this scenario, the western HRC represents an axial part of the intrusion where high heat flows, due to repeated injections of primitive magma, promoted the development of a compositionally zoned magma chamber. In contrast, the eastern HRC is believed to constitute a marginal facies of the intrusion, where sidewall cooling caused rapid crystallisation of successive magma additions and inhibited adcumulate growth and the formation of a compositionally stratified liquid column. Results from a detailed study of the mineral compositions and whole-rock geochemistry of the HRC suggest that all of the cumulates and most of the dykes and tonalites were derived from boninitic parental magmas. This hypothesis is substantiated by empirical models which were calculated using both major and trace element approaches. The models also show that the low-Ti basalts (second-stage melts) and boninites (third-stage melts) were probably derived from component-induced progressive partial melting of a MORB-depleted spinel lherzolite source. Partial melting of the refractory mantle source was initiated and sustained by the continued influx of slab-derived Si02-, LREE-, Zr-enriched hydrous fluids. The proposed petrogenetic model for the HRC is most consistent with an island arc setting for the complex, with melting occurring in MORB-depleted forearc lithosphere overlying a subduction zone. The HRC is not an ophiolite sensu stricto, despite the fact that it is more similar to the upper portions of the so-called 'island-arc ophiolites' (eg. Troodos) than to any other type of ultramafic intrusion. It is best perceived as a high-level boninitic magma chamber which developed immediately beneath a platform of genetically-related submarine lavas. The composition of the boninitic parental magmas was the principal control on the PGE geochemistry of the cumulate sequences. Despite representing PGE-enriched, S-undersaturated second-stage melts similar to the parental (U-type) magmas for the ultramafic portions of the Bushveld complex, the boninites were unable to form a Merensky-reef type PGE deposit because they did not come into contact with S-saturated (A-type) magmas. In the absence of cumulus sulphides, the PPGE (Pt, Pd, Rh) were partitioned into the residual liquids, whereas the IPGE (Os, Ir, Ru) were strongly fractionated into early-formed olivine-chromite cumulates. These features are highlighted by the extremely low IPGE tenor of the boninites, and the relatively high IPGE tenor of the dunites in comparison to the more evolved cumulates. Three types of chromitites are recognised in the HRC. Type I and type II chromitites occur as magmatic schlieren which probably formed during replenishment events. Type III chromitites occur as layers, pods and irregular patches developed in an unusual xenolith-bearing plagioclase peridotite. It is interpreted to have formed due to mixing between ascending xenolith-bearing, hydrous intercumulus liquids and resident ultramafic magma along the floor of the magma chamber. Chromitite occurrences in the HRC are enriched in PGE by up to two orders of magnitude relative to their ultramafic host rocks, and most strongly-enriched in Ru and/or Pt and Rh. Their PGE tenor reflects the early crystallisation of laurite, followed by Pt and Rh sulpharsenides, in response to increasing S and As activities which developed primarily due to magma mixing. The low Os and Ir abundances in the chromitites is believed to reflect their formation from Os- and Ir-depleted boninitic magmas. The HRC and the Adamsfield complex were the world's major suppliers of Os-Ir-Ru alloys during the early part of this century. The alloys occur in alluvial deposits that are spatially associated with primitive olivine-rich cumulate sequences. The latter are commonly suspected to represent the source for the alloys, but recent exploration programs have yet to define a bedrock occurrence of Os-Ir-Ru alloys in Tasmania. The results from the present study provide important constraints on the genesis of these alloys. Silicate inclusions found in the alloys suggest that they formed at mantle temperatures and pressures and were transported to crustal magma chambers by boninitic magmas. The alloys may have crystallised during ascent, or alternatively, represent residual mantle phases which became incorporated into the boninites during partial melting. Most of the observations pertaining to the Os and Ir geochemistry of the HRC suggest that the alloys probably occur in thin magmatic concentrations that were deposited along the base of the intrusion from the most primitive of the boninitic magmas involved in the generation of the cumulate sequences. Future exploration should focus on delineating the cumulate products of these primitive magmas and specifically, in defining the horizons which demarcate fresh influxes of these liquids.
  • Item
    Thumbnail Image
    The geology and geochemistry of the Agnew Intrusion: implications for the petrogenesis of early Huronian mafic igneous rocks in Central Ontario, Canada
    Vogel, Derek Christian ( 1996-07)
    The Early Proterozoic Agnew Intrusion is a well-preserved leucogabbronoritic to gabbronoritic layered intrusion that is a member of the East Bull Lake suite of layered intrusions (ca. 2490-2470 Ma) occurring in central Ontario. These intrusions are related to the development of the Huronian Rift Zone, which may be part of a much more widespread rifting event that involved the Fennoscandian Shield. Structural data suggest that these intrusions have been subjected to ductile deformation and are erosional remnants of one or more sill-like bodies originally emplaced along the contact between Archaean granitic rocks of the Superior Province and an Early Proterozoic Huronian continental flood basalt sequence in the Southern Province.
  • Item
    Thumbnail Image
    Geochemistry and mineralisation of primary and secondary platinum-group elements in the ultramafic "Alaskan-type" Owendale complex and laterites in the Fifield Region, New South Wales, Australia
    Shi, Bielin ( 1995)
    The Owendale Complex belongs to a family of ultramafic-mafic intrusions that is characterised by a zonal, nonstratiform arrangement of the principal ultramafic units. The ultramafic rocks of the Owendale Complex are virtually identical to many of the Alaskan-type intrusions, however the associated gabbroic rocks (wehrlites) are K-rich and Si-undersaturated, in contrast to the tholeiitic gabbroic rocks of the Alaskan examples. The intrusion history of the Owendale Complex is thought to have involved emplacement of a gabbroic intrusion that was invaded by an ultrabasic magma, possibly while the former was still only partly solidified. Emplacement of both magmas probably occurred during Late Devonian tectonism and deformation synchronous with emplacement and crystallisation is necessary to explain the present non-stratiform arrangement of the rock units. The most obvious linkage factor between the two proposed parent magmas (gabbroic and ultrabasic) of the Owendale suites is their mutual affinity with tholeiitic basalt magmas and the similarities of their products with intrusions of alkalic basalt derivation. This suggests the possibility that the Owendale Complex rocks and those of other tholeiitic intrusions of the regions are comagmatic products of an ancestral magma that may have also produced the widespread assemblage of complexes. Viewed from this perspective, the ultramafic rocks of Owendale Complex would thus represent a very minor product of a period of regional magmatic activity. Most alloys, erlichmanite, cooperite and some grains with exclusion texture of Pt-Os-Ir-Pd-Rh are considered to represent a primary high-temperature paragenesis. Concentration of PGE in pegmatoidal units of dunite-wehrlite is explained by the accumulation of platinum-rich alloys that segregated directly from the melt at an early stage in the evolution of the complex. The high-temperature PGM segregate directly from a silicate melt and were not generated by exsolution from spinels or magmatic sulphides. These suggest that fS2 was generally low (subordinate sulphide formation) and, after some influence at the beginning, has given way to rising fO2 (chromite, olivine and Pt-Fe-Cu-Ni alloys formation). After lithification, the ultramafic rocks become subject to "reducing" conditions, i.e., conditions of lower O2 and S2 activities. Ni-Fe alloys, native Fe and Bi formed in cracks which filled the serpentine matrixes. The former PGM (erlichmanite, cooperite and Pt-Fe alloys) were exposed to the reducing conditions via cracks were desulphurated to form porous cooperite with Pt-Fe alloys and multiphase textural Os-Ir-Ni, Pt-Ir aggregates. It is plausible that the veinlets and aggregates of unnamed Rh-Sb-S, (Pt, Ir)2(Fc, Cu)3(S, Sb, AS)3 in the dunites may also have been formed by reduction of Ni-rich sulphides and erlichmanite, Pt-Fe alloys or cooperite. Late PGM are dominated by sperrylite-geversite solid solution resulting from the reaction of early PGM with a fluid phase. A hydrothermal origin is also indicated for native Fe, native Bi and awaruite (NiFe) and the base-metal sulphides (pentlandite, chalcopyrite, sphalerite, arsenopyrite, pyrite, pyrrhotite, and some Ni-Co-Fe sulfide). The cause of the reducing conditions may have been related to H2 production accompanying hydrous alteration of the dunites and clinopyroxenites. The laterites overlying the ultramafic complexes in the Fifield region are exceptionally well-developed and well-preserved weathering profiles. Field, textural and geochemical data all support a chemical weathering origin for the profiles and compatible with meteoric and ground water origins. Meteoric water with intermediate Eh and pH and negligible dissolved species sinks into the laterite where these parameters are modified. The Eh rises and pH decreases to the conditions typical of lateritic soils and the concentration of dissolved species increases. In this state the water is able to take PGE and Au into solution from a finely disseminated form in the bedrock as a part of the process of lateritisation. When the soil solution transports the PGE and Au towards a transitional interface must exist between the ferruginous and saprolite zones with lower Eh, neutral pH and lower concentration of dissolved salts. At this transitional region, deposition of the PGE and Au occurred. The presence of magnetic Pt-Fe-Cu-Ni alloys suggests that hydrothermal solutions play a later role in the Fifield region, and the alloys have grown in situ in a lateritic soil by a process involving laterite water solution in the high Eh, low pH conditions prevalent in such soil, followed by deposition when the conditions become less extreme. Some examples of the Pt-Fe alloys from such an environment become frequently strongly magnetic with larger size. It is assumed that the temperature of the hydrothermal solution is in the range of 300° - 500° C (Bowles, 1990). PGE mineralisation in the primary rocks and laterite in this region has demonstrated a good example of multi-stage process mineralisation including primary high temperature magmatic formation; low temperature postmagmatic hydrothermal alteration and residual lateritic enrichment.