School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Geochronology and geochemistry of Cenozoic volcanism in relation to epithermal gold mineralisation in western Java, Indonesia
    Titisari, Anastasia Dewi ( 2014)
    Western Java in Indonesia is a well known gold deposit district that contains a number of world class ore deposits. The district hosts mainly low-sulphidation epithermal gold deposits and the most important gold deposits occur in the Pongkor, Cibaliung, Cikotok, and Papandayan districts. Although Java has a long record of volcanic activity, little is known of its pre-Pleistocene arc history, particularly in relation to the timing and geochemical evolution of the volcanic successions associated with ore mineralisation. Moreover, much of the available geochronological data for volcanic rocks in the region are based on imprecise K-Ar results. Therefore a combination of 40Ar/39Ar dating techniques and elemental geochemical methods (major and trace element analyses) have been utilised in the current project. Most of volcanic samples from the current study are characterised by enriched LILE and LREE compositions, which are characteristic of calc-alkaline arcs. However, Papandayan basaltic samples exhibit depleted LREE contents, typical of island arc tholeiites. The more enriched LILE and LREE compositions present in some Pongkor samples and Papandayan intrusive rocks, are indicative of high-K calc-alkaline and shoshonite arcs. Trends in Nb/Y, Th/Nb, Ce/Yb, and Ce/La(N) ratios reflect temporal evolution of the arcs, from: i) a primitive arc (low Nb/Y, Th/Nb, Ce/Yb and high Ce/La(N) ratios) characterised by the tholeiite basaltic samples; ii) an evolved arc (high Nb/Y, Th/Nb, Ce/Yb and low Ce/La(N) values) typified by the high K – shoshonite volcanic samples; and iii) a mature arc (with intermediate Nb/Y, Th/Nb, Ce/Yb and Ce/La(N) values) represented by the calc-alkaline volcanic samples. Trace element signatures of La and Ce suggest a broadly similar magma source for all rocks in the region. 40Ar/39Ar dating of volcanic rocks that host gold mineralisation are representative of the western Java magmatic arc, give the oldest age of ca. 18 Ma for the Papandayan district; ages ranging from ~11 Ma to ~9.5 Ma for the Cibaliung district, from ~18 Ma to ~4.5 Ma for the Cikotok district, and the youngest ages from 2.74 ± 0.03 Ma to ca. 2 Ma for the Pongkor district. Adularia crystallisation that is associated with western Java gold mineralisation shows 40Ar/39Ar ages from the oldest to most recent: ca. 18 Ma for the Papandayan district; from 12.44 ± 0.19 Ma to 9.39 ± 0.75 Ma for the Cibaliung district; 5.36 ± 0.46 Ma and 3.43 ± 0.04 Ma for the Cikotok district; and from 2.02 ± 0.03 Ma to 1.80 ± 0.03 Ma for the Pongkor district. Some host volcanic rocks have been affected by hydrothermal alteration, which has resulted in partial resetting of ages towards the time of gold mineralisation. Variation of the mineralisation ages suggests multiple generation of adularia growth in the mineralised veins. The dating results suggest that the magmatic arc across western Java are most likely linked to Southeast Asia tectonic evolution, from Early Miocene counter clock wise rotation of Kalimantan to Late Miocene – Pliocene subduction of the Eurasian continental plate beneath the Indo-Australian oceanic plate. The new and existing age data allow for a reconstruction of the western Java magmatic arc, with three main events identified: an Early Miocene primitive tholeiite arc (20 – 18 Ma), a Middle Miocene mature calc-alkaline arc (13 – 9 Ma) and a Late Miocene – Pliocene evolved high-K calc-alkaline and shoshonitic arc (7 – 2 Ma). The reconstruction indicates that the Early Miocene Papandayan low sulphidation epithermal system (with some indications of high sulphidation activity) is related to a basement comprising thinned island arc crust. In contrast the Miocene – Pleistocene low-sulphidation epithermal mineralisation system of the Cibaliung, Cikotok and Pongkor districts, which is associated with a calc-alkaline arc, was constructed on Sundaland continental crust.