School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    The geology and geochemistry of the Agnew Intrusion: implications for the petrogenesis of early Huronian mafic igneous rocks in Central Ontario, Canada
    Vogel, Derek Christian ( 1996-07)
    The Early Proterozoic Agnew Intrusion is a well-preserved leucogabbronoritic to gabbronoritic layered intrusion that is a member of the East Bull Lake suite of layered intrusions (ca. 2490-2470 Ma) occurring in central Ontario. These intrusions are related to the development of the Huronian Rift Zone, which may be part of a much more widespread rifting event that involved the Fennoscandian Shield. Structural data suggest that these intrusions have been subjected to ductile deformation and are erosional remnants of one or more sill-like bodies originally emplaced along the contact between Archaean granitic rocks of the Superior Province and an Early Proterozoic Huronian continental flood basalt sequence in the Southern Province.
  • Item
    Thumbnail Image
    Geochemistry and mineralisation of primary and secondary platinum-group elements in the ultramafic "Alaskan-type" Owendale complex and laterites in the Fifield Region, New South Wales, Australia
    Shi, Bielin ( 1995)
    The Owendale Complex belongs to a family of ultramafic-mafic intrusions that is characterised by a zonal, nonstratiform arrangement of the principal ultramafic units. The ultramafic rocks of the Owendale Complex are virtually identical to many of the Alaskan-type intrusions, however the associated gabbroic rocks (wehrlites) are K-rich and Si-undersaturated, in contrast to the tholeiitic gabbroic rocks of the Alaskan examples. The intrusion history of the Owendale Complex is thought to have involved emplacement of a gabbroic intrusion that was invaded by an ultrabasic magma, possibly while the former was still only partly solidified. Emplacement of both magmas probably occurred during Late Devonian tectonism and deformation synchronous with emplacement and crystallisation is necessary to explain the present non-stratiform arrangement of the rock units. The most obvious linkage factor between the two proposed parent magmas (gabbroic and ultrabasic) of the Owendale suites is their mutual affinity with tholeiitic basalt magmas and the similarities of their products with intrusions of alkalic basalt derivation. This suggests the possibility that the Owendale Complex rocks and those of other tholeiitic intrusions of the regions are comagmatic products of an ancestral magma that may have also produced the widespread assemblage of complexes. Viewed from this perspective, the ultramafic rocks of Owendale Complex would thus represent a very minor product of a period of regional magmatic activity. Most alloys, erlichmanite, cooperite and some grains with exclusion texture of Pt-Os-Ir-Pd-Rh are considered to represent a primary high-temperature paragenesis. Concentration of PGE in pegmatoidal units of dunite-wehrlite is explained by the accumulation of platinum-rich alloys that segregated directly from the melt at an early stage in the evolution of the complex. The high-temperature PGM segregate directly from a silicate melt and were not generated by exsolution from spinels or magmatic sulphides. These suggest that fS2 was generally low (subordinate sulphide formation) and, after some influence at the beginning, has given way to rising fO2 (chromite, olivine and Pt-Fe-Cu-Ni alloys formation). After lithification, the ultramafic rocks become subject to "reducing" conditions, i.e., conditions of lower O2 and S2 activities. Ni-Fe alloys, native Fe and Bi formed in cracks which filled the serpentine matrixes. The former PGM (erlichmanite, cooperite and Pt-Fe alloys) were exposed to the reducing conditions via cracks were desulphurated to form porous cooperite with Pt-Fe alloys and multiphase textural Os-Ir-Ni, Pt-Ir aggregates. It is plausible that the veinlets and aggregates of unnamed Rh-Sb-S, (Pt, Ir)2(Fc, Cu)3(S, Sb, AS)3 in the dunites may also have been formed by reduction of Ni-rich sulphides and erlichmanite, Pt-Fe alloys or cooperite. Late PGM are dominated by sperrylite-geversite solid solution resulting from the reaction of early PGM with a fluid phase. A hydrothermal origin is also indicated for native Fe, native Bi and awaruite (NiFe) and the base-metal sulphides (pentlandite, chalcopyrite, sphalerite, arsenopyrite, pyrite, pyrrhotite, and some Ni-Co-Fe sulfide). The cause of the reducing conditions may have been related to H2 production accompanying hydrous alteration of the dunites and clinopyroxenites. The laterites overlying the ultramafic complexes in the Fifield region are exceptionally well-developed and well-preserved weathering profiles. Field, textural and geochemical data all support a chemical weathering origin for the profiles and compatible with meteoric and ground water origins. Meteoric water with intermediate Eh and pH and negligible dissolved species sinks into the laterite where these parameters are modified. The Eh rises and pH decreases to the conditions typical of lateritic soils and the concentration of dissolved species increases. In this state the water is able to take PGE and Au into solution from a finely disseminated form in the bedrock as a part of the process of lateritisation. When the soil solution transports the PGE and Au towards a transitional interface must exist between the ferruginous and saprolite zones with lower Eh, neutral pH and lower concentration of dissolved salts. At this transitional region, deposition of the PGE and Au occurred. The presence of magnetic Pt-Fe-Cu-Ni alloys suggests that hydrothermal solutions play a later role in the Fifield region, and the alloys have grown in situ in a lateritic soil by a process involving laterite water solution in the high Eh, low pH conditions prevalent in such soil, followed by deposition when the conditions become less extreme. Some examples of the Pt-Fe alloys from such an environment become frequently strongly magnetic with larger size. It is assumed that the temperature of the hydrothermal solution is in the range of 300° - 500° C (Bowles, 1990). PGE mineralisation in the primary rocks and laterite in this region has demonstrated a good example of multi-stage process mineralisation including primary high temperature magmatic formation; low temperature postmagmatic hydrothermal alteration and residual lateritic enrichment.