School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Australian lineament tectonics: with an emphasis on northwestern Australia
    Elliott, Catherine I. ( 1994-08)
    Australia is transected by a network of systematic continental-scale lineaments that are considered to be zones of concentrated, aligned tectonic activity which have apparent continuity over vast distances. The influence of lineaments on the rock record can be identified in many types of data-sets, and existing data reveals previously undescribed basement influences. Several continental-scale lineaments can be traced offshore with apparent continuity for hundreds to thousands of kilometres, two of which are seen to cross the Tasman Sea in offshore eastern Australia. Geological and chronological evidence demonstrates that many of the lineaments have been zones of reactivation since at least the Early Proterozoic (- 1880 Ma) and that they appear to cross major terrane boundaries. Alternative models for their origin are a) a pre-existing lineament network maintained in an ancient basement underlying the entire continent; b) lateral propagation of crustal-scale structures; c) alignment of genetically unrelated lineaments giving the appearance of continuity. Australian deep-seismic profiles show that continental-scale lineaments are zones of crustal-scale structure which in some cases transect the crust-mantle boundary. Lineaments demonstrate many faulting styles, e.g. listric extensional (G3), planar moderate-angle thrusts (G2 l), and sub-vertical thrusts (G 17). In some cases the structural style varies laterally along the length of the lineament. (For complete abstract open document)
  • Item
    Thumbnail Image
    Late Paleozoic glaciations of Eastern Australia
    Bowen, Richard L. ( 1959)
    In a re-analysis of the Late Paleozoic glaciations of Eastern Australia, close review of elements of paleogeography results in many new interpretations. New data appear from field studies of the details (including till fabric analyses in the Heathcote District of Victoria) of glacial stratigraphy in drift sequences of Victoria and South Australia. Analysis of sedimentary volumes in Tasmania and analysis of sedimentation during the Upper Carboniferous and Permian of New South Wales and Queensland adds more new information. Field reviews of sequences in the Finke District of the Northern Territory, Tasmania, New South Wales, and Queensland aid in understanding the effects of glaciations in those regions. All data known to the writer from extensive field examinations and review of published data may be incorporated into a unified history of the glacial times. Many lacunae exist, but analogy with studies of Pleistocene glacial drifts helps to bridge some gaps. Principally during the Middle and Upper parts of the Upper Carboniferous and in the Early Permian, highland centers in the northwest of Tasmania (the Macquarie Mountains) and in northeast New South Wales (the Clarencetown Mountains, a volcanic range) became loci for glacial formation and spread. From the former, glaciers spread east, north, and northwest. Upon advancing northwest, the Mt. Lofty-Kangaroo Island Ranges were encountered. These were breached with the establishment of glacial corridors, and a glacial lobe subsequently pushed about 600 miles further north-north-west. In that region, this glacial [?] [?] [?] joined a sheet from Western Australia. Also, in pushing north from the Macquarie Mountains, the glaciers apparently advanced 900+ miles to the Springsure District of Queensland. From the Clarencetown Mountains, piedmont glaciers radiated east (to the sea near Mt. George, Booral, and Limeburner’s Creek), south, and west to fill subsiding basins with glacial deposits and some volcanic effusions. Additionally, some glaciers spread east from the epi-Kanimblan mountains of New South Wales. Thick drift sequences left by these spreading glaciers have been preserved in favourable sites. Fluvial and lacustrine deposits in the drifts demonstrate the presence of interstadial and interglacial conditions, but the entire interval may be considered a single glacial epoch much resembling the Pleistocene, although that of the Late Paleozoic probably was much longer. After wastage of the glaciers, cold weather (at least during winters) persisted, for many phenomena found in the Permian sediments seem best related to climates which were cold at least part of the year. Notable among these are the erratics so widely distributed through the marine Permian sediments of eastern Australia. Such erratics seem best explained as phenomena resulting from the transport by winter ice floes of material eroded from glacial drift left on the land by earlier glaciations.
  • Item
    Thumbnail Image
    The geology, petrology and geochemistry of the Otway formation volcanogenic sediments
    Duddy, Ian Ross ( 1983)
    The geology, petrology and geochemistry of the Early Cretaceous Otway Formation have been investigated in detail and used to determ ine the nature of the source rocks and to develop a model for the diagenetic and low-grade metamorphic readjustments. The fluviatile Otway Formation was deposited in continental rift grabens that stretched some 1000 km along the southern coast of Australia during the Early Cretaceous. The main areas of deposition in the Otway, Gippsland and Bass Basins contain an estimated 100,000 cubic kilometres of detritus. The major part of this detritus was derived from pyroclastic material which has been shown by the fission track dating studies to have been derived from contemporaneous volcanism. The pile of volcanogenic material comprising the Otway Formation is at least 3 to 4 km thick in the main basins. The sediments are entirely non-marine and were deposited by large scale multichannel streams cut in extensive floodplains. The streams deposited thick multistorey channel sandstones in sheet-like bodies and a diverse spectrum of overbank mudstones and fine-grained sandstones. The complex channel sandstones fine upwards but have numerous erosional breaks indicating repeated flood cycles. Whereas the channel deposits have internal features consistent with braided stream channels the overall system has a large proportion of floodplain which was been considered in the past to have been a feature of meandering channels. The oversupply of volcanogenic detritus is considered to have been responsible for the development of the multiple channel depositional system in a climate of high seasonal rainfall. Whole rock chemical analyses of all lithologies in the sedimentary suite, recalculated i.nto a set of normative minerals, have proved useful in the distinction and description of sedimentary rocks in general. P20S was found to be useful for the identification of Early Cretaceous soil forming processes. The study of the chemical composition of detrital minerals has demonstrated the usefulness of this approach in the identification of the nature of the source magmas of volcanogenic sediments. For the Otway Formation, analyses of clinopyroxenes, amphiboles, feldspars and sphene in particular, have shown that high potassium dacitic to shoshonitic volcanism dominated during Early Cretaceous rifting. The new data on the geology and mineralogical and chemical features of the Otway Formation have application to the study of diagenesis and low-grade metamorphism in volcanogenic sediments in general. (From Abstract)
  • Item
    No Preview Available
    The geology and petrology of the Lower Devonian Buchan Group, Victoria
    Husain, Farhat ( 1981)
    This study is devoted to a detailed examination of the stratigraphy and petrology of the late Lower Devonian (Emisan) Buchan Group, an essentially carbonate sequence. The Buchan Group begins with the lenticular Spring Creek member of the Buchan Caves Limestone. This consists of terrigenous clastic sediments derived from erosion of the underlying Snowy River Rhyodacites. Lithologies range from conglomerates and breccias with rhyodacite pebbles, through arkosic sandstones to quartz sandstones and shales. Pyroclastics, previously identified in this unit, are absent. The Spring Creek member changed from non-marine to marine as the main transgression became established and was followed by a change to carbonate deposition.