School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    The geology of the Pyramid and Tonghi Creek areas, East Gippsland
    Spiers, Peter D. ( 1984)
    A study of the geology of the Club Terrace region is being undertaken with two major aims: 1) to provide a clearer picture of the structural geology and geological history of the region and, using this, 2) to investigate Ag, Cu, Pb, and Zn mineralization present in the region with emphasis on producing a model for ore genesis.
  • Item
    Thumbnail Image
    The geology, petrology and geochemistry of the Otway formation volcanogenic sediments
    Duddy, Ian Ross ( 1983)
    The geology, petrology and geochemistry of the Early Cretaceous Otway Formation have been investigated in detail and used to determ ine the nature of the source rocks and to develop a model for the diagenetic and low-grade metamorphic readjustments. The fluviatile Otway Formation was deposited in continental rift grabens that stretched some 1000 km along the southern coast of Australia during the Early Cretaceous. The main areas of deposition in the Otway, Gippsland and Bass Basins contain an estimated 100,000 cubic kilometres of detritus. The major part of this detritus was derived from pyroclastic material which has been shown by the fission track dating studies to have been derived from contemporaneous volcanism. The pile of volcanogenic material comprising the Otway Formation is at least 3 to 4 km thick in the main basins. The sediments are entirely non-marine and were deposited by large scale multichannel streams cut in extensive floodplains. The streams deposited thick multistorey channel sandstones in sheet-like bodies and a diverse spectrum of overbank mudstones and fine-grained sandstones. The complex channel sandstones fine upwards but have numerous erosional breaks indicating repeated flood cycles. Whereas the channel deposits have internal features consistent with braided stream channels the overall system has a large proportion of floodplain which was been considered in the past to have been a feature of meandering channels. The oversupply of volcanogenic detritus is considered to have been responsible for the development of the multiple channel depositional system in a climate of high seasonal rainfall. Whole rock chemical analyses of all lithologies in the sedimentary suite, recalculated i.nto a set of normative minerals, have proved useful in the distinction and description of sedimentary rocks in general. P20S was found to be useful for the identification of Early Cretaceous soil forming processes. The study of the chemical composition of detrital minerals has demonstrated the usefulness of this approach in the identification of the nature of the source magmas of volcanogenic sediments. For the Otway Formation, analyses of clinopyroxenes, amphiboles, feldspars and sphene in particular, have shown that high potassium dacitic to shoshonitic volcanism dominated during Early Cretaceous rifting. The new data on the geology and mineralogical and chemical features of the Otway Formation have application to the study of diagenesis and low-grade metamorphism in volcanogenic sediments in general. (From Abstract)
  • Item
    Thumbnail Image
    The geology and petrology of the Lower Devonian Buchan Group, Victoria
    Husain, Farhat ( 1981)
    This study is devoted to a detailed examination of the stratigraphy and petrology of the late Lower Devonian (Emisan) Buchan Group, an essentially carbonate sequence. The Buchan Group begins with the lenticular Spring Creek member of the Buchan Caves Limestone. This consists of terrigenous clastic sediments derived from erosion of the underlying Snowy River Rhyodacites. Lithologies range from conglomerates and breccias with rhyodacite pebbles, through arkosic sandstones to quartz sandstones and shales. Pyroclastics, previously identified in this unit, are absent. The Spring Creek member changed from non-marine to marine as the main transgression became established and was followed by a change to carbonate deposition.