School of Earth Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Geologic expressions of faulting and earthquake strong ground motions in intraplate bedrock terrains
    King, Tamarah Rosellen ( 2019)
    Australian earthquakes offer unique opportunities to investigate environmental and landscape effects of reverse rupturing faults. All historic surface-rupturing earthquakes have occurred in arid, low-relief, bedrock dominated areas with little to no anthropogenic influence. Environmental earthquake effects identified following the 2016, reverse-mechanism, MW 6.1 Petermann earthquake in remote central Australia are categorised with the Environmental Seismic Intensity scale, the first application of this scale for an Australian earthquake. The intensity and distribution of environmental damage demonstrates strong asymmetry due to fault geometry, with damage increasing towards the surface rupture rather than epicentral region. The direction and distances of 1,437 co-seismically displaced rock fragments (chips) in the near-field of the Petermann earthquake provide a dense proxy-record of strong ground motions, both along- and across-rupture. Chips record preferred azimuths of displacement that are attributed to rupture fling effects. This unprecedented geological proxy-record of the distribution, directivity and intensity of strong ground motions has important implications for hazard analysis in the near-field of reverse earthquakes. Fine-scale mapping of the 2016 Peterman surface rupture and secondary fractures using field, drone-derived and remote-sensing datasets indicates surface rupture characteristics vary with changes in surface geology. Deformation zones are wider and less recognizable in granular materials (e.g. dunes, alluvium) compared with those in proximal bedrock. Kinematic analysis of bedrock fractures indicates sinistral-reverse faulting, consistent with published focal mechanisms, and a maximum compressive stress orientation generally consistent with the inferred regional SHMax orientation. Trenching and 10Be cosmogenic nuclide erosion rates provide preliminary evidence of absence for prior rupture on the Petermann faults within the last 200 to 400 kyrs. The 2016 earthquake is therefore hypothesized to be the first to rupture this fault in the near surface. Analyses of geological and geophysical data from ten moderate magnitude (MW 4.7 – 6.6) historical surface-rupturing earthquakes in cratonic Australia indicate that rupture likely propagated along pre-existing Precambrian bedrock structures. Six of seven events show evidence of multi-fault rupture across 2 to 6 discrete faults of greater than 1 km length, placing these events as some of the most structurally complex earthquake ruptures identified globally for this magnitude. No unambiguous geological evidence for preceding surface-rupturing earthquakes is present. This raises important questions regarding the recurrence behaviour of intraplate stable continental region faults, with implications for seismic hazard analysis. In summary, this thesis explores observational, seismic, and remote-sensing data of surface rupturing earthquakes in Australia to provide new (i) data regarding the recurrence patterns of Australian earthquakes (ii) insights into basement controls on these earthquakes (iii) and methods to quantify seismic directionality behaviour common to reverse earthquakes globally. These contribute to better understanding the why, what, when, where of intraplate earthquakes, and how seismic hazard varies across diverse tectonic and crustal environments.
  • Item
    Thumbnail Image
    Cryogenian iron formations: glaciation and oxygenation
    Lechte, Maxwell ( 2018)
    The Cryogenian Period (720–635 Ma) experienced extreme glaciations broadly coincident with a transformation of the Earth’s surface oxidation state, supercontinent breakup, and the evolution of complex animal multicellularity. However, the cause-and-effect relationships of these events are unresolved. The Cryogenian ice ages, known as ‘Snowball Earth' events, would have placed important constraints on the biosphere, and it remains unclear what role global refrigeration played in setting the stage for eukaryotic diversification and the origin of animals. The Cryogenian also experienced the deposition of iron-rich marine chemical sediments (iron formations), representing the first episode of global iron formation deposition in over one billion years. This shift in iron cycling highlights complexities in seawater chemistry and oxidation state during this time, and these iron formations offer valuable insights into Cryogenian palaeoenvironments. Iron formations from Cryogenian glacial successions in Namibia, USA and Australia were studied in order to investigate Cryogenian iron formation genesis and elucidate the relationships between glaciation, ocean chemistry, oxygenation and biotic evolution. In-depth sedimentology, stratigraphy and petrography reveals that these iron formations are intimately associated with Sturtian glacial sediments and are interpreted have been deposited in a range of glaciomarine environments. Geochemical analysis of these chemical sediments permits the reconstruction of Cryogenian ocean chemistry and the synglacial palaeoredox landscape. Multiple geochemical proxies, including rare earth element and iron isotope systematics, indicate widespread marine anoxia with increasing seawater oxidation with proximity to the ice shelf grounding line. A genetic model is proposed whereby the mixing of oxygenated glacial fluids with ferruginous seawater led to the deposition of iron formations in glacial successions during the Cryogenian. Atmospheric oxygen trapped in glacial ice was likely an important oxidant source, delivered to Cryogenian glaciomarine environments via subglacial meltwater outwash. This meltwater supply may have been crucial in establishing oxygenated marine habitats for eukaryotes, including early animals, during Snowball Earth. Multi-million-year oxidation of the oceans via this mechanism may have also set the stage for a Neoproterozoic marine oxygenation event.
  • Item
    Thumbnail Image
    Geology of the Club Terrace district, East Gippsland
    BYRNE, DAVID ( [1983])
    The mapping and laboratory projects are a combined study of the Club Terrace district. Part of the laboratory project will involve structural analysis of drill core, obtained from the study area by Samedan of Australia, in an attempt to relate the mineralization to structural and sedimentological features. (From Introduction)